A243579 Integers of the form 8k+7 that can be written as a sum of four distinct squares of the form m, m+2, m+4, m+5, where m == 1 (mod 4).
71, 255, 567, 1007, 1575, 2271, 3095, 4047, 5127, 6335, 7671, 9135, 10727, 12447, 14295, 16271, 18375, 20607, 22967, 25455, 28071, 30815, 33687, 36687, 39815, 43071, 46455, 49967, 53607, 57375, 61271, 65295, 69447, 73727, 78135, 82671, 87335, 92127, 97047, 102095, 107271, 112575, 118007, 123567, 129255, 135071, 141015, 147087
Offset: 1
Examples
a(5) = 64*5^2-8*5+15 = 1575 and m = 4*5-3 = 17 so 1575 = 17^2+19^2+21^2+22^2.
Links
- Walter Kehowski, Table of n, a(n) for n = 1..20737
- J. Owen Sizemore, Lagrange's Four Square Theorem
- R. C. Vaughan, Lagrange's Four Square Theorem
- Eric Weisstein's World of Mathematics, Lagrange's Four-Square Theorem
- Wikipedia, Lagrange's four-square theorem
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[64*n^2-8*n+15 : n in [1..50]]; // Wesley Ivan Hurt, Nov 28 2021
-
Maple
A243579 := proc(n::posint) return 64*n^2-8*n+15 end;
-
PARI
Vec(-x*(15*x^2+42*x+71)/(x-1)^3 + O(x^100)) \\ Colin Barker, Sep 13 2015
Formula
a(n) = 64*n^2-8*n+15.
From Colin Barker, Sep 13 2015: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
G.f.: x*(15*x^2+42*x+71) / (1-x)^3. (End)
Comments