cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243579 Integers of the form 8k+7 that can be written as a sum of four distinct squares of the form m, m+2, m+4, m+5, where m == 1 (mod 4).

Original entry on oeis.org

71, 255, 567, 1007, 1575, 2271, 3095, 4047, 5127, 6335, 7671, 9135, 10727, 12447, 14295, 16271, 18375, 20607, 22967, 25455, 28071, 30815, 33687, 36687, 39815, 43071, 46455, 49967, 53607, 57375, 61271, 65295, 69447, 73727, 78135, 82671, 87335, 92127, 97047, 102095, 107271, 112575, 118007, 123567, 129255, 135071, 141015, 147087
Offset: 1

Views

Author

Walter Kehowski, Jun 08 2014

Keywords

Comments

If n is of the form 8k+7 and n = a^2+b^2+c^2+d^2 with gap pattern 221, then [a,b,c,d] = [1,3,5,6]+[4*i,4*i,4*i,4*i] for i>=0.

Examples

			a(5) = 64*5^2-8*5+15 = 1575 and m = 4*5-3 = 17 so 1575 = 17^2+19^2+21^2+22^2.
		

Crossrefs

Programs

  • Magma
    [64*n^2-8*n+15 : n in [1..50]]; // Wesley Ivan Hurt, Nov 28 2021
  • Maple
    A243579 := proc(n::posint) return 64*n^2-8*n+15 end;
  • PARI
    Vec(-x*(15*x^2+42*x+71)/(x-1)^3 + O(x^100)) \\ Colin Barker, Sep 13 2015
    

Formula

a(n) = 64*n^2-8*n+15.
From Colin Barker, Sep 13 2015: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
G.f.: x*(15*x^2+42*x+71) / (1-x)^3. (End)