cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243580 Integers of the form 8k + 7 that can be written as a sum of four distinct squares of the form m, m + 1, m + 3, m + 5, where m == 2 (mod 4).

Original entry on oeis.org

87, 287, 615, 1071, 1655, 2367, 3207, 4175, 5271, 6495, 7847, 9327, 10935, 12671, 14535, 16527, 18647, 20895, 23271, 25775, 28407, 31167, 34055, 37071, 40215, 43487, 46887, 50415, 54071, 57855, 61767, 65807, 69975, 74271, 78695, 83247, 87927, 92735, 97671, 102735, 107927, 113247, 118695, 124271, 129975, 135807, 141767, 147855
Offset: 1

Views

Author

Walter Kehowski, Jun 08 2014

Keywords

Comments

If n is of the form 8k + 7 and n = a^2 + b^2 + c^2 + d^2 where [a, b, c, d] has gap pattern 122, then [a, b, c, d] = [2, 3, 5, 7] + [4*i, 4*i, 4*i, 4*i], i >= 0.

Examples

			a(5) = 64*n^2 + 8*5 + 15 = 1655 and m = 4*5 - 2 = 18 so 1655 = 18^2 + 19^2 + 21^2 + 23^2.
		

Crossrefs

Programs

  • Maple
    A243580 := proc(n::posint) return 64*n^2+8*n+15 end;
  • Mathematica
    Table[64n^2 + 8n + 15, {n, 50}] (* Alonso del Arte, Jun 08 2014 *)
    LinearRecurrence[{3,-3,1},{87,287,615},50] (* Harvey P. Dale, Mar 27 2019 *)
  • PARI
    Vec(-x*(15*x^2+26*x+87)/(x-1)^3 + O(x^100)) \\ Colin Barker, Sep 13 2015

Formula

a(n) = 64*n^2 + 8*n + 15.
From Colin Barker, Sep 13 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: -x*(15*x^2+26*x+87) / (x-1)^3. (End)