A243580 Integers of the form 8k + 7 that can be written as a sum of four distinct squares of the form m, m + 1, m + 3, m + 5, where m == 2 (mod 4).
87, 287, 615, 1071, 1655, 2367, 3207, 4175, 5271, 6495, 7847, 9327, 10935, 12671, 14535, 16527, 18647, 20895, 23271, 25775, 28407, 31167, 34055, 37071, 40215, 43487, 46887, 50415, 54071, 57855, 61767, 65807, 69975, 74271, 78695, 83247, 87927, 92735, 97671, 102735, 107927, 113247, 118695, 124271, 129975, 135807, 141767, 147855
Offset: 1
Examples
a(5) = 64*n^2 + 8*5 + 15 = 1655 and m = 4*5 - 2 = 18 so 1655 = 18^2 + 19^2 + 21^2 + 23^2.
Links
- Walter Kehowski, Table of n, a(n) for n = 1..20737
- J. Owen Sizemore, Lagrange's Four Square Theorem (web.archive)
- R. C. Vaughan, Lagrange's Four Square Theorem
- Eric Weisstein's World of Mathematics, Lagrange's Four-Square Theorem
- Wikipedia, Lagrange's four-square theorem
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
A243580 := proc(n::posint) return 64*n^2+8*n+15 end;
-
Mathematica
Table[64n^2 + 8n + 15, {n, 50}] (* Alonso del Arte, Jun 08 2014 *) LinearRecurrence[{3,-3,1},{87,287,615},50] (* Harvey P. Dale, Mar 27 2019 *)
-
PARI
Vec(-x*(15*x^2+26*x+87)/(x-1)^3 + O(x^100)) \\ Colin Barker, Sep 13 2015
Formula
a(n) = 64*n^2 + 8*n + 15.
From Colin Barker, Sep 13 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: -x*(15*x^2+26*x+87) / (x-1)^3. (End)
Comments