A243584 Decimal expansion of 1/(eta*P'(eta)), a constant related to the asymptotic evaluation of the number of prime multiplicative compositions, where eta is A243350, the unique solution of P(x)=1, P being the prime zeta P function (P(x) = sum_(p prime) 1/p^x).
4, 1, 2, 7, 7, 3, 2, 3, 7, 0, 9, 3, 6, 7, 0, 4, 8, 7, 2, 8, 9, 0, 4, 2, 6, 9, 9, 1, 7, 2
Offset: 0
Examples
0.41277323709367...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's composition constant, p. 293.
Links
- Eric Weisstein's MathWorld, Prime Zeta function
Crossrefs
Cf. A243350.
Programs
-
Mathematica
digits = 30; eta = x /. FindRoot[PrimeZetaP[x] == 1, {x, 7/5}, WorkingPrecision -> digits + 200]; c = N[1/(eta*PrimeZetaP'[eta]) // Re, digits + 200]; RealDigits[c, 10, digits ] // First (* updated Sep 11 2015 *)