cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243350 Decimal expansion of the unique solution of the equation sum_(p prime)(1/p^x) = 1, a constant related to the asymptotic evaluation of the number of prime multiplicative compositions.

Original entry on oeis.org

1, 3, 9, 9, 4, 3, 3, 3, 2, 8, 7, 2, 6, 3, 3, 0, 3, 1, 8, 2, 0, 2, 8, 0, 7, 2, 1, 4, 7, 4, 5, 6, 4, 4, 3, 2, 7, 9, 0, 4, 7, 2, 7, 4, 2, 9, 4, 8, 4, 3, 8, 3, 9, 4, 1, 2, 7, 4, 7, 6, 5, 8, 2, 2, 8, 8, 8, 0, 6, 2, 4, 9, 2, 4, 8, 7, 2, 4, 7, 8, 0, 0, 2, 3, 3, 3, 9, 0, 5, 2, 0, 0, 2, 1, 6, 6, 8, 5, 1, 3
Offset: 1

Views

Author

Jean-François Alcover, Jun 06 2014

Keywords

Examples

			1.3994333287263303182028072147456443279...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's composition constant, p. 293.

Crossrefs

Cf. A243584.

Programs

  • Mathematica
    digits = 100; eta = x /. FindRoot[PrimeZetaP[x] == 1, {x, 3/2}, WorkingPrecision -> digits+5]; RealDigits[eta, 10, digits] // First
  • PARI
    eps(x=1.)=my(p=if(x,precision(x),default(realprecision)));precision(2.>>(32*ceil(p*38539962/371253907))*abs(x),9)
    primezeta(s)=my(t=s*log(2),iter=lambertw(t/eps())\t,tot); forsquarefree(k=1,iter, tot+=moebius(k)/k[1]*log(abs(zeta(k[1]*s)))); tot;
    solve(x=1.399,1.4,primezeta(x)-1) \\ Charles R Greathouse IV, Nov 16 2018
    
  • PARI
    solve(x=1.05,1.5,1-sumeulerrat(1/p,x)) \\ Hugo Pfoertner, Nov 28 2021

A102375 Decimal expansion of reciprocal of the smallest positive zero of sum_{j>0} f(j) where f(j)=[(-1)^(j+1)]*x^(2^(j+1)-2-j)/[(1-x)(1-x^3)(1-x^7)...(1-x^(2^j-1))].

Original entry on oeis.org

1, 7, 9, 4, 1, 4, 7, 1, 8, 7, 5, 4, 1, 6, 8, 5, 4, 6, 3, 4, 9, 8, 4, 6, 4, 9, 8, 8, 0, 9, 3, 8, 0, 7, 7, 6, 3, 7, 0, 1, 3, 6, 4, 4, 1, 8, 2, 6, 5, 1, 3, 5, 5, 6, 4, 7, 1, 4, 1, 2, 9, 1, 4, 5, 8, 8, 1, 1, 0, 1, 1, 5, 3, 4, 1, 6, 7, 4, 3, 5, 8, 7, 9, 1, 1, 5, 2, 7, 5, 8, 7, 5, 7, 2, 8, 2, 5, 1, 5, 5
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 05 2005

Keywords

Crossrefs

Programs

  • Mathematica
    digits = 103; m0 = 5; dm = 2; Clear[f, g]; f[x_, m_] := Sum[((-1)^(j + 1)*x^( 2^(j + 1) - 2 - j))/Product[1 - x^(2^k - 1), {k, 1, j}] , {j, 1, m}] // N[#, digits]&; g[m_] := g[m] = (1/x /. FindRoot[f[x, m] == 1, {x, 5/9, 4/9, 6/9}, WorkingPrecision -> digits ]); g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], Print["m = ", m]; m = m + dm]; RealDigits[g[m], 10, digits] // First (* Jean-François Alcover, Jun 19 2014 *)

Formula

1.79414718754168546349846498809380776370136441826513556471412914588110115...
Showing 1-2 of 2 results.