cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A243584 Decimal expansion of 1/(eta*P'(eta)), a constant related to the asymptotic evaluation of the number of prime multiplicative compositions, where eta is A243350, the unique solution of P(x)=1, P being the prime zeta P function (P(x) = sum_(p prime) 1/p^x).

Original entry on oeis.org

4, 1, 2, 7, 7, 3, 2, 3, 7, 0, 9, 3, 6, 7, 0, 4, 8, 7, 2, 8, 9, 0, 4, 2, 6, 9, 9, 1, 7, 2
Offset: 0

Views

Author

Jean-François Alcover, Jun 06 2014

Keywords

Examples

			0.41277323709367...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's composition constant, p. 293.

Crossrefs

Cf. A243350.

Programs

  • Mathematica
    digits = 30; eta = x /. FindRoot[PrimeZetaP[x] == 1, {x, 7/5},  WorkingPrecision -> digits + 200]; c = N[1/(eta*PrimeZetaP'[eta]) // Re, digits + 200]; RealDigits[c, 10, digits ] // First (* updated Sep 11 2015 *)

A102375 Decimal expansion of reciprocal of the smallest positive zero of sum_{j>0} f(j) where f(j)=[(-1)^(j+1)]*x^(2^(j+1)-2-j)/[(1-x)(1-x^3)(1-x^7)...(1-x^(2^j-1))].

Original entry on oeis.org

1, 7, 9, 4, 1, 4, 7, 1, 8, 7, 5, 4, 1, 6, 8, 5, 4, 6, 3, 4, 9, 8, 4, 6, 4, 9, 8, 8, 0, 9, 3, 8, 0, 7, 7, 6, 3, 7, 0, 1, 3, 6, 4, 4, 1, 8, 2, 6, 5, 1, 3, 5, 5, 6, 4, 7, 1, 4, 1, 2, 9, 1, 4, 5, 8, 8, 1, 1, 0, 1, 1, 5, 3, 4, 1, 6, 7, 4, 3, 5, 8, 7, 9, 1, 1, 5, 2, 7, 5, 8, 7, 5, 7, 2, 8, 2, 5, 1, 5, 5
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 05 2005

Keywords

Crossrefs

Programs

  • Mathematica
    digits = 103; m0 = 5; dm = 2; Clear[f, g]; f[x_, m_] := Sum[((-1)^(j + 1)*x^( 2^(j + 1) - 2 - j))/Product[1 - x^(2^k - 1), {k, 1, j}] , {j, 1, m}] // N[#, digits]&; g[m_] := g[m] = (1/x /. FindRoot[f[x, m] == 1, {x, 5/9, 4/9, 6/9}, WorkingPrecision -> digits ]); g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], Print["m = ", m]; m = m + dm]; RealDigits[g[m], 10, digits] // First (* Jean-François Alcover, Jun 19 2014 *)

Formula

1.79414718754168546349846498809380776370136441826513556471412914588110115...

A260623 Decimal expansion of the real solution x to zeta(x) - primezeta(x) = 2.

Original entry on oeis.org

1, 4, 2, 5, 7, 1, 0, 4, 1, 1, 6, 1, 3, 1, 8, 1, 6, 5, 1, 7, 8, 2, 3, 6, 8, 3, 6, 7, 5, 4, 8, 5, 5, 0, 5, 6, 9, 3, 3, 9, 1, 8, 6, 2, 0, 5, 3, 4, 6, 2, 4, 7, 3, 5, 9, 4, 9, 4, 9, 4, 7, 6, 7, 4, 3, 6, 6, 8, 7, 3, 0, 4, 5, 6, 7, 5, 6, 1, 7, 5, 0, 1, 6, 7, 7, 8, 6
Offset: 1

Views

Author

Matthew Campbell, Oct 06 2015

Keywords

Comments

This is also the solution x to Sum_{c composite}(1/c^x) = 1.

Examples

			1.4257...
		

Crossrefs

For the prime analog, see A243350.

Programs

  • Mathematica
    x /. FindRoot[Zeta[x] - PrimeZetaP[x] == 2, {x, 3/2}, WorkingPrecision -> 100] // RealDigits // First (* Jean-François Alcover, May 07 2021 *)
  • PARI
    solve(x=1.1, 2, zeta(x) - sumeulerrat(1/p, x) - 2) \\ Michel Marcus, May 07 2021

Extensions

a(6) corrected and a(7)-a(87) added by Hiroaki Yamanouchi, Nov 12 2015
Showing 1-3 of 3 results.