cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243630 Primes p such that 2*p^3 - 3 is also prime.

Original entry on oeis.org

2, 7, 11, 13, 47, 101, 107, 151, 163, 167, 251, 257, 401, 443, 467, 521, 571, 641, 653, 673, 797, 907, 911, 971, 983, 997, 1013, 1151, 1153, 1181, 1187, 1223, 1231, 1277, 1291, 1303, 1361, 1433, 1481, 1511, 1597, 1637, 1723, 1741, 1811, 1951, 2027, 2081, 2083, 2141, 2287, 2311
Offset: 1

Views

Author

Vincenzo Librandi, Jun 08 2014

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) | IsPrime(2*p^3 - 3)];
  • Mathematica
    Select[Prime[Range[2500]], PrimeQ[2 #^3 - 3] &]

A356510 Primes p such that 2*p^2 - 7, 2*p^2 - 1, and 2*p^2 + 3 are prime.

Original entry on oeis.org

43, 127, 197, 3613, 3767, 4957, 28687, 29723, 40193, 46817, 66403, 78737, 89137, 93253, 104243, 105337, 105673, 110543, 114113, 123397, 127247, 145963, 148303, 168713, 173293, 190387, 201893, 207367, 213613, 241597, 256117, 261323, 268253, 278543, 283807, 333227, 339373, 340913, 356173, 359143
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 09 2022

Keywords

Comments

All terms == 3 or 7 (mod 10).
All terms == 1 or 13 (mod 14). - Jon E. Schoenfield, Sep 05 2022

Examples

			a(3) = 197 is a term because 197, 2*197^2 - 7 = 77611, 2*197^2 - 1 = 77617, and 2*197^2 + 3 = 77621 are all prime.
		

Crossrefs

Contained in A106483 and A243595.

Programs

  • Maple
    filter:= p -> isprime(p) and isprime(2*p^2+3) and isprime(2*p^2-1) and isprime(2*p^2-7):
    select(filter, [seq(i,i=3..1000000,2)]);
  • Mathematica
    Select[Prime[Range[30000]], AllTrue[2*#^2 + {-7, -1, 3}, PrimeQ] &] (* Amiram Eldar, Aug 09 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return isprime(n) and all(isprime(2*n*n-i) for i in [7, 1, -3])
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Aug 09 2022
Showing 1-2 of 2 results.