cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243608 Number T(n,k) of ways k L-tiles can be placed on an n X n square; triangle T(n,k), n>=0, 0<=k<=A229093(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 9, 20, 11, 1, 1, 16, 87, 196, 176, 46, 2, 1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2, 1, 36, 545, 4544, 22969, 73098, 147502, 185744, 140288, 59140, 12313, 1046, 26, 1, 49, 1056, 13215, 106819, 587149, 2251309, 6082000, 11562155
Offset: 0

Views

Author

Alois P. Heinz, Jun 07 2014

Keywords

Comments

An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed.

Examples

			T(3,1) = 4:
  ._____.   ._____.   ._____.   ._____.
  | |_|_|   |_|_|_|   |_| |_|   |_|_|_|
  |___|_|   | |_|_|   |_|___|   |_| |_|
  |_|_|_|   |___|_|   |_|_|_|   |_|___|
T(4,4) = 1:
  ._______.
  | |_| |_|
  |___|___|
  | |_| |_|
  |___|___|
T(5,6) = 2:
  ._________.   ._________.
  | |_|_| |_|   |_| |_| |_|
  |___| |___|   | |___|___|
  |_| |___|_|   |___|_| |_|
  | |___| |_|   | |_| |___|
  |___|_|___|   |___|___|_| .
Triangle T(n,k) begins:
  1;
  1;
  1,  1;
  1,  4,   1;
  1,  9,  20,   11,    1;
  1, 16,  87,  196,  176,   46,    2;
  1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2;
		

Crossrefs

Columns k=0-6 give: A000012, A000290(n-1) for n>0, A243645, A243646, A243647, A243648, A243649.
Row sums give main diagonal of A226444 or A066864(n-1) for n>0.

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n<2 then 1
        elif min(l[])>0 then b(n-1, map(h->h-1, l))
        else for k while l[k]>0 do od; expand(
             b(n, subsop(k=1, l))+ `if`(n>1 and k (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; Expand[b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 1}]], 0]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Table[0, {n}]]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 12 2017, translated from Maple *)