A243611 Irregular triangular array of denominators of all rational numbers ordered as in Comments.
1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 3, 4, 3, 2, 1, 1, 3, 5, 5, 5, 3, 4, 3, 2, 1, 2, 3, 4, 4, 7, 8, 7, 6, 5, 5, 5, 3, 4, 3, 2, 1, 1, 3, 5, 5, 5, 7, 8, 9, 7, 11, 11, 9, 7, 4, 7, 8, 7, 6, 5, 5, 5, 3, 4, 3, 2, 1, 2, 3, 4, 4, 7, 8, 7, 6, 5, 10, 13, 12, 11, 12, 13, 14
Offset: 1
Examples
First 6 rows of the array of all rationals: 0/1 -1/1 .. 1/1 -1/2 .. 2/1 -2/1 .. -1/3 .. 1/2 ... 3/1 -3/2 .. -2/3 .. -1/4 .. 2/3 ... 3/2 ... 4/1 -3/1 .. -4/3 .. -3/5 .. -2/5 .. -1/5 .. 1/3 . 3/4 . 5/3 . 5/2 . 5/1 The denominators, by rows: 1,1,1,2,1,1,3,2,1,2,3,4,3,2,1,1,3,5,5,3,4,3,2,1,...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..3000
Programs
-
Mathematica
z = 12; g[1] = {0}; f1[x_] := x + 1; f2[x_] := -1/(x + 1); h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] u = Table[g[n], {n, 1, z}] v = Table[Reverse[Drop[g[n], Fibonacci[n - 1]]], {n, 2, z}] Delete[Flatten[Denominator[u]], 6] (* A243611 *) Delete[Flatten[Numerator[u]], 6] (* A243612 *) Delete[Flatten[Denominator[v]], 2] (* A243613 *) Delete[Flatten[Numerator[v]], 2] (* A243614 *) ListPlot[g[20]]
Comments