cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243651 Nonnegative integers of the form x^2+11y^2.

Original entry on oeis.org

0, 1, 4, 9, 11, 12, 15, 16, 20, 25, 27, 36, 44, 45, 47, 48, 49, 53, 60, 64, 69, 75, 80, 81, 92, 93, 99, 100, 103, 108, 111, 115, 121, 124, 125, 132, 135, 144, 148, 155, 163, 165, 169, 176, 177, 180, 185, 188, 192, 196, 199, 201, 207, 212, 213, 220, 225, 236, 240, 243, 256, 257, 267, 268, 269, 275
Offset: 0

Views

Author

N. J. A. Sloane, Jun 08 2014

Keywords

Comments

Discriminant -44.

Crossrefs

Primes: A033209.

Programs

  • Maple
    fd:=proc(a,b,c,M) local dd,xlim,ylim,x,y,t1,t2,t3,t4,i;
    dd:=4*a*c-b^2;
    if dd<=0 then error "Form should be positive definite."; break; fi;
    t1:={};
    xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd)));
    ylim:=ceil( 2*sqrt(a*M/dd));
    for x from 0 to xlim do
    for y from -ylim to ylim do
    t2 := a*x^2+b*x*y+c*y^2;
    if t2 <= M then t1:={op(t1),t2}; fi; od: od:
    t3:=sort(convert(t1,list));
    t4:=[];
    for i from 1 to nops(t3) do
    if isprime(t3[i]) then t4:=[op(t4),t3[i]]; fi; od:
    [[seq(t3[i],i=1..nops(t3))], [seq(t4[i],i=1..nops(t4))]];
    end;
    fd(1,0,11,500);