cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243661 Triangle read by rows: the x = 1+q Narayana triangle at m=3.

Original entry on oeis.org

1, 4, 3, 22, 33, 12, 140, 315, 231, 55, 969, 2907, 3213, 1547, 273, 7084, 26565, 39270, 28560, 10200, 1428, 53820, 242190, 448500, 437000, 235980, 66861, 7752, 420732, 2208843, 4916457, 6009003, 4351347, 1864863, 437437, 43263, 3362260, 20173560, 52451256, 77134200, 70122000, 40320150, 14307150, 2861430, 246675
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.

Examples

			Triangle begins:
     1;
     4,     3;
    22,    33,    12;
   140,   315,   231,    55;
   969,  2907,  3213,  1547,   273;
  7084, 26565, 39270, 28560, 10200,  1428;
  ...
		

Crossrefs

The left column is A002293, the main diagonal is A001764.
The case m=1 is A126216 or A033282 (its mirror image).
The case m=2 is A243660.

Programs

  • Mathematica
    polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator;
    P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m + 1) n - k, n - k] (1 - x)^k x^(n - k), {k, 0, n}]/(m n + 1);
    T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]];
    T[3] // Flatten (* Jean-François Alcover, Oct 08 2018, from PARI *)
  • PARI
    N(n,m)=sum(k=0,n,binomial(m*n+1,k)*binomial((m+1)*n-k,n-k)*(1-x)^k*x^(n-k))/(m*n+1);
    T(m)=for(i=1,20,z=subst(polrecip(N(i,m)),x,1+q);print(Vecrev(z)));
    T(3) /* Lars Blomberg, Jul 17 2017 */

Formula

From Werner Schulte, Nov 23 2018: (Start)
T(n,k) = binomial(4*n+1-k,n-k) * binomial(3*n,k-1) / n.
More generally: T_m(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(m*n,k-1) / n where m = 3.
Sum_{k=1..n} (-1)^k * T(n,k) = -1. (End)
Sum_{k = 1..n} (-1)^(k+1)*T(n,k)*binomial(x + 4*n - k + 1, 4*n - k + 1) = (x + 1) * ( Product_{k = 2..n} (x + k)^2 ) * ( Product_{k = 1..2*n+1} (x + n + k) ) / (n!*(3*n + 1)!) for n >= 1. Cf. A126216 and A243660. - Peter Bala, Oct 08 2022

Extensions

a(22)-a(39) from Lars Blomberg, Jul 12 2017