cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243694 Number of Hyposylvester classes of 4-multiparking functions of length n.

Original entry on oeis.org

1, 1, 6, 45, 382, 3498, 33696, 336549, 3453750, 36197694, 385817700, 4169274354, 45573898860, 503014992340, 5598239469972, 62754598454805, 707899472049702, 8029846915852662, 91534356644739300, 1048036064453687814, 12047350849047152388, 138984261578842304268
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1, (3*(759*n^3-1725*n^2+1174*n-240)*
          a(n-1)-54*(n-2)*(11*n-3)*(2*n-3)*a(n-2))/(8*(2*n+1)*(11*n-14)*n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 12 2024
  • Mathematica
    a[n_] :=  Binomial[3*n, n] Hypergeometric2F1[1 - n, -n, -3 n, -3]  / (2 n + 1);
    Table[a[n], {n, 0, 21}]  (* Peter Luschny, Apr 12 2024 *)

Formula

a(n) = (1/n) * Sum_{k=0..n-1} 3^k * binomial(n,k) * binomial(3*n-k,2*n+1) for n > 0. - Jun Yan, Apr 12 2024
a(n) ~ sqrt(165 + 43*sqrt(33)) * (207 + 33*sqrt(33))^n / (sqrt(11*Pi) * n^(3/2) * 2^(5*n + 9/2)). - Vaclav Kotesovec, Apr 12 2024
a(n) = binomial(3*n, n) * hypergeom([1 - n, -n], [-3*n], -3) / (2*n + 1). - Peter Luschny, Apr 12 2024

Extensions

More terms from Jun Yan, Apr 12 2024