A243702 Nonnegative numbers represented by the indefinite quadratic form x^2 + 13xy - 9y^2.
0, 1, 4, 5, 9, 16, 20, 21, 25, 36, 39, 45, 49, 51, 59, 64, 80, 81, 84, 91, 100, 105, 119, 121, 125, 131, 139, 141, 144, 156, 159, 169, 180, 189, 195, 196, 201, 204, 221, 225, 236, 241, 245, 255, 256, 269, 271, 279, 289, 291, 295, 320, 324, 329, 336, 351, 359
Offset: 1
Keywords
Links
- Will Jagy, C++ program Conway_Positive_All.cc to find all positive numbers represented by an indefinite binary quadratic form
- Will Jagy, Sample output from Conway_Positive_All.cc
- Peter Luschny, Binary Quadratic Forms, GitHub 2024.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
SageMath
load('https://raw.githubusercontent.com/PeterLuschny/BinaryQuadraticForms/main/BinaryQF.sage') Q = binaryQF([1, 13, -9]) print(Q.represented_positives(360, 'all')) # '0' is missing as indicated by the function name. # Peter Luschny, May 04 2024
Comments