cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243701 Primes represented by the indefinite quadratic form x^2 + 13xy - 9y^2.

Original entry on oeis.org

5, 59, 131, 139, 241, 269, 271, 359, 409, 541, 569, 599, 661, 701, 761, 859, 881, 911, 941, 1021, 1091, 1109, 1291, 1399, 1439, 1481, 1549, 1559, 1579, 1609, 1619, 1931, 1999, 2011, 2029, 2089, 2099, 2111, 2141, 2251, 2399, 2459, 2521, 2711, 2729, 2731, 2749
Offset: 1

Views

Author

N. J. A. Sloane, Jun 17 2014

Keywords

Comments

Discriminant 205.
Comment from Noam D. Elkies, Jun 14 2014 (See the MathOverflow #171807 link): These are exactly the primes p such that the polynomial x^8+15x^6+48x^4+15x^2+1 factors into linear factors mod p.
4*a(n) has the form z^2 - 205*y^2, where z = 2*x+13*y. - Bruno Berselli, Jun 20 2014

Crossrefs

This sequence (primes), A243702 (all), A372518 (primitively).

Programs

  • PARI
    fc(a,b,c,M) = {
      my(t1=List(),t2);
      forprime(p=2,prime(M),
        t2 = qfbsolve(Qfb(a,b,c),p);
        if(t2 != 0, listput(t1,p))
      );
      Vec(t1)
    };
    fc(1,13,-9,600)
    
  • SageMath
    load('https://raw.githubusercontent.com/PeterLuschny/BinaryQuadraticForms/main/BinaryQF.sage')
    Q = binaryQF([1, 13, -9])
    print(Q.represented_positives(2750, 'prime'))  # Peter Luschny, May 04 2024

A372518 Positive numbers primitively represented by the indefinite quadratic form x^2 + 13xy - 9y^2.

Original entry on oeis.org

1, 5, 21, 39, 51, 59, 81, 91, 105, 119, 131, 139, 141, 159, 189, 195, 201, 221, 241, 255, 269, 271, 279, 291, 295, 329, 351, 359, 369, 371, 405, 409, 411, 441, 455, 459, 469, 471, 501, 541, 549, 569, 579, 595, 599, 611, 651, 655, 661, 679, 681, 689, 695, 699
Offset: 1

Views

Author

Peter Luschny, May 04 2024

Keywords

Comments

Discriminant 205.

Crossrefs

Cf. A243701 (primes), A243702 (all), this sequence (primitively).

Programs

  • SageMath
    load('https://raw.githubusercontent.com/PeterLuschny/BinaryQuadraticForms/main/BinaryQF.sage')
    Q = binaryQF([1, 13, -9])
    print(Q.represented_positives(700, 'primitively'))
Showing 1-2 of 2 results.