A243712 Irregular triangular array of denominators of all positive rational numbers ordered as in Comments.
1, 1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 3, 1, 2, 3, 4, 5, 3, 6, 5, 5, 1, 2, 3, 4, 5, 3, 6, 5, 5, 7, 7, 8, 7, 1, 2, 3, 4, 5, 3, 6, 5, 5, 7, 7, 8, 7, 8, 9, 11, 11, 9, 4, 1, 2, 3, 4, 5, 3, 6, 5, 5, 7, 7, 8, 7, 8, 9, 11, 11, 9, 4, 9, 11, 14, 15, 14, 7
Offset: 1
Examples
First 8 rows of the array of all positive rationals: 1/1 2/1 3/1 4/1 .. 1/2 5/1 .. 3/2 .. 2/3 6/1 .. 5/2 .. 5/3 ... 3/4 7/1 .. 7/2 .. 8/3 ... 7/4 ... 4/5 .. 1/3 8/1 .. 9/2 .. 11/3 .. 11/4 .. 9/5 .. 4/3 .. 5/6 .. 3/5 .. 2/5 The denominators, by rows: 1,1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,3,1,2,3,4,5,3,6,5,5,...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -1/x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; u = Table[g[n], {n, 1, z}]; u1 = Delete[Flatten[u], 10] w[1] = 0; w[2] = 1; w[3] = 1; w[n_] := w[n - 1] + w[n - 3]; u2 = Table[Drop[g[n], w[n]], {n, 1, z}]; u3 = Delete[Delete[Flatten[Map[Reverse, u2]], 4], 4] Denominator[u3] (* A243712 *) Numerator[u3] (* A243713 *) Denominator[u1] (* A243714 *) Numerator[u1] (* A243715 *)
Comments