cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243719 Number of inequivalent (mod D_8) ways to place 4 nonattacking knights on an n X n board.

Original entry on oeis.org

1, 6, 66, 609, 3375, 14181, 47485, 136085, 342739, 784059, 1653033, 3267471, 6107271, 10901405, 18683285, 30934341, 49659915, 77611995, 118386689, 176753639, 258774303, 372270981, 526962861, 735113445, 1011678595, 1375177451, 1847843545, 2456771055, 3234056439
Offset: 2

Views

Author

Heinrich Ludwig, Jun 19 2014

Keywords

Crossrefs

Programs

  • Magma
    [1,6,66,609] cat [(n^8 - 54*n^6 + 144*n^5 + 1048*n^4 - 5280*n^3 - 2432*n^2 + 52800*n - 78912 + (1 - (-1)^n)/2*(14*n^4 - 48*n^3 - 158*n^2 + 768*n - 723))/192: n in [6..30]]; // Vincenzo Librandi, Jun 21 2014
  • Mathematica
    Drop[CoefficientList[Series[411 + 171*x + 38*x^2 - 5*x^3 - 15*x^4 - 6*x^5 - (411 - 1473*x - 236*x^2 + 6588*x^3 - 5073*x^4 - 11179*x^5 + 13200*x^6 + 4572*x^7 - 19047*x^8 - 991*x^9 + 9564*x^10 - 1776*x^11 - 1955*x^12 + 675*x^13) / ((1-x)^9*(1+x)^5), {x, 0, 20}], x],2] (* Vaclav Kotesovec, Jun 19 2014 *)

Formula

a(n) = (n^8 - 54*n^6 + 144*n^5 + 1048*n^4 - 5280*n^3 - 2432*n^2 + 52800*n - 78912 + (1 - (-1)^n)/2*(14*n^4 - 48*n^3 - 158*n^2 + 768*n - 723))/192 for n >= 6.
G.f.: 411 + 171*x + 38*x^2 - 5*x^3 - 15*x^4 - 6*x^5 - (411 - 1473*x - 236*x^2 + 6588*x^3 - 5073*x^4 - 11179*x^5 + 13200*x^6 + 4572*x^7 - 19047*x^8 - 991*x^9 + 9564*x^10 - 1776*x^11 - 1955*x^12 + 675*x^13) / ((1-x)^9*(1+x)^5). - Vaclav Kotesovec, Jun 19 2014