A243734 Primes p for which p + 4, p^2 + 4 and p^3 + 4 are primes.
3, 7, 103, 277, 487, 967, 4783, 5503, 5923, 8233, 21013, 26317, 27943, 41593, 55213, 78307, 78853, 86197, 89653, 94723, 99013, 123727, 148153, 157177, 166627, 172867, 177883, 179107, 185893, 192883, 194713, 203767, 204517, 223633, 225217, 227593, 236893
Offset: 1
Examples
p = 3 is in this sequence because p + 4 = 7, p^2 + 4 = 13 and p^3 + 4 = 31 are all primes. p : p+4, p^2+4, p^3+4 7 : 11, 53, 347 103: 107, 10613, 1092731 277: 281, 76733, 21253937 487: 491, 237173, 115501307
Links
- Abhiram R Devesh, Table of n, a(n) for n = 1..1000
Programs
-
PARI
s=[]; forprime(p=2, 200000, if(isprime(p+4) && isprime(p^2+4) && isprime(p^3+4), s=concat(s, p))); s \\ Colin Barker, Jun 11 2014
-
Python
import sympy.ntheory as snt n=2 while n > 1 and n < 10**6: n1=n+4 n2=((n**2)+4) n3=((n**3)+4) ##Check if n1, n2 and n3 are also primes. if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True: print(n, end=', ') n=snt.nextprime(n)
Comments