A243759 Triangle T(m,k): exponent of the highest power of 3 dividing the binomial coefficient binomial(m,k).
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 2, 2, 1, 2, 2, 0, 0, 0, 2, 1, 1, 2, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 2, 1, 2, 2
Offset: 0
Examples
The triangle begins: 0, 0, 0, 0, 0, 0, 0, 1, 1, 0; 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0; 0, 1, 1, 0, 1, 1, 0; 0, 0, 1, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 2, 2, 1, 2, 2, 1, 2, 2, 0;
Links
- Robert Israel, Table of n, a(n) for n = 0..10010
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
Programs
-
Maple
A243759:= (m,k) -> padic[ordp](binomial(m,k),3); for m from 0 to 50 do seq(A243759(m,k),k=0..m) od; # Robert Israel, Jun 15 2014
-
Mathematica
T[m_, k_] := IntegerExponent[Binomial[m, k], 3]; Table[T[m, k], {m, 0, 12}, {k, 0, m}] // Flatten (* Jean-François Alcover, Jun 05 2022 *)
-
Sage
m=50 T=[0]+[3^valuation(i, 3) for i in [1..m]] Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]] [log(Integer(x),base=3) for sublist in Table for x in sublist]
-
Scheme
(define (A243759 n) (A007949 (A007318 n))) ;; Antti Karttunen, Oct 28 2014
Formula
Extensions
Name clarified by Antti Karttunen, Oct 28 2014
Comments