cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243759 Triangle T(m,k): exponent of the highest power of 3 dividing the binomial coefficient binomial(m,k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 2, 2, 1, 2, 2, 0, 0, 0, 2, 1, 1, 2, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 2, 1, 2, 2
Offset: 0

Views

Author

Tom Edgar, Jun 10 2014

Keywords

Comments

T(m,k) is the number of 'carries' that occur when adding k and n-k in base 3 using the traditional addition algorithm.

Examples

			The triangle begins:
0,
0, 0,
0, 0, 0,
0, 1, 1, 0;
0, 0, 1, 0, 0;
0, 0, 0, 0, 0, 0;
0, 1, 1, 0, 1, 1, 0;
0, 0, 1, 0, 0, 1, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0;
0, 2, 2, 1, 2, 2, 1, 2, 2, 0;
		

Crossrefs

Programs

  • Maple
    A243759:= (m,k) -> padic[ordp](binomial(m,k),3);
    for m from 0 to 50 do
      seq(A243759(m,k),k=0..m)
    od;   # Robert Israel, Jun 15 2014
  • Mathematica
    T[m_, k_] := IntegerExponent[Binomial[m, k], 3];
    Table[T[m, k], {m, 0, 12}, {k, 0, m}] // Flatten (* Jean-François Alcover, Jun 05 2022 *)
  • Sage
    m=50
    T=[0]+[3^valuation(i, 3) for i in [1..m]]
    Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]]
    [log(Integer(x),base=3) for sublist in Table for x in sublist]
    
  • Scheme
    (define (A243759 n) (A007949 (A007318 n))) ;; Antti Karttunen, Oct 28 2014

Formula

T(m,k) = log_3(A242849(m,k)).
From Antti Karttunen, Oct 28 2014: (Start)
a(n) = A007949(A007318(n)).
a(n) * A083093(n) = 0 and a(n) + A083093(n) > 0 for all n.
(End)

Extensions

Name clarified by Antti Karttunen, Oct 28 2014