A243761 Primes of the form p^2 + pq + q^2, where p and q are consecutive primes.
19, 109, 433, 1327, 4567, 6079, 19687, 49927, 62233, 103813, 160087, 172801, 238573, 363313, 395323, 463363, 583447, 640333, 753007, 1145773, 1529413, 1728247, 1968301, 2056753, 2223967, 2317927, 2349679, 2413927, 3121201, 3577393, 4148953, 4298443
Offset: 1
Keywords
Examples
19 is in the sequence because 2^2 + 2*3 + 3^2 = 19 is prime: 2 and 3 are consecutive primes. 109 is in the sequence because 5^2 + 5*7 + 7^2 = 109 is prime: 5 and 7 are consecutive primes.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..8900
Programs
-
Maple
with(numtheory): A243761:= proc() local k, p, q; p:=ithprime(n); q:=ithprime(n+1); k:=p^2 + p*q + q^2; if isprime(k) then RETURN (k); fi; end: seq(A243761 (), n=1..500);
-
Mathematica
Select[Table[Prime[n]^2 + Prime[n] Prime[n + 1] + Prime[n + 1]^2, {n, 500}], PrimeQ[#] &]
-
Python
from itertools import islice from sympy import isprime, nextprime def A243761_gen(): # generator of terms p, q = 2, 3 while True: if isprime(r:=p*(p+q)+q**2): yield r p, q = q, nextprime(q) A243761_list = list(islice(A243761_gen(),20)) # Chai Wah Wu, Feb 27 2023