A243818 Primes p for which p^i - 4 is prime for i = 1, 3 and 5.
11, 971, 1877, 2861, 8741, 12641, 13163, 16763, 28283, 29021, 30707, 36713, 41957, 42227, 58967, 98717, 105971, 115127, 128663, 138641, 160817, 164093, 167441, 190763, 205607, 210173, 211067, 228341, 234197, 237977, 246473, 249107, 276557, 295433, 312233
Offset: 1
Examples
p = 11 is in this sequence because p - 4 = 7 (prime), p^3 - 4 = 1327 (prime) and p^5 - 4 = 161047 (prime). p = 971 is in this sequence because p - 4 = 967 (prime), p^3 - 4 = 915498607 (prime) and p^5 - 4 = 863169625893847 (prime).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..250 from Abhiram R Devesh)
Programs
-
Mathematica
Select[Range[300000], PrimeQ[#] && AllTrue[#^{1, 3, 5} - 4, PrimeQ] &] (* Amiram Eldar, Apr 04 2020 *) Select[Prime[Range[27000]],AllTrue[#^{1,3,5}-4,PrimeQ]&] (* Harvey P. Dale, Jan 04 2021 *)
-
Python
import sympy.ntheory as snt n=5 while n>1: n1=n-4 n2=((n**3)-4) n3=((n**5)-4) ##Check if n1 , n2 and n3 are also primes. if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True: print(n, n1, n2, n3) n=snt.nextprime(n)
Comments