cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243846 Numbers for which the nozero power-sequence of n falls into a loop.

Original entry on oeis.org

1, 366784, 14877, 531136, 29287878125, 13631616, 18916327, 1245376, 118971, 1, 24871, 1942272, 377414623, 361123756, 221285675921484375, 453559756, 16185473, 4136832, 113758939, 366784, 164961711, 3179798512, 131147731, 1841716224, 283439365914625, 118754727776
Offset: 1

Views

Author

Anthony Sand, Jun 12 2014

Keywords

Comments

Numbers returned by the following procedure: For n = 1, 2, 3, ..., let x(n; 1) = 1. Begin the recursive sequence x(n; i) = nozero(x(n; i-1) * n), where the function nozero(x) removes all zeros from x (see A004719). When x(n; i) = x(n; j
a(10*n) = a(n). - Pontus von Brömssen, May 19 2019

Examples

			a(2) = 366784 because x(2; 491) = nozero(183392 * 2) = 366784. Subsequently x(2; 527) = nozero(1533392 * 2) = nozero(3066784) = 366784, and this happens for the first time. Therefore x(2; 527) = x(2; 491) and the procedure returns x(2; 527) = 366784.
a(3) = 14877 because x(3; 28) = nozero(469359 * 3) = nozero(1408077) = 14877. Subsequently, x(3; 108) = nozero(4959 * 3) = 14877, and this happens for the first time. Therefore x(3; 28) = x(3; 108) and the procedure returns x(3;108) = 14877.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{h = <||>, t = n}, While[! KeyExistsQ[h,t], h[t]=0; t = FromDigits@ Select[ IntegerDigits[n t], # > 0 &]]; t]; Array[a, 20] (* Giovanni Resta, May 20 2019 *)

Formula

Recurrence: x(n; i) = nozero(x(n; i-1) * n), x(n; 1) = 1, i >= 2, with n >= 1. For example, for x(2;10) = 512 and nozero(512 * 2) = nozero(1024) = 124. Therefore x(2;11) = 124.
If the sequence {x(n; i)}_{i >= 1} becomes periodic at some entry x(n; j), that is if there exists a period length L(n) such that x(n; i + L(n)) = x(n; i) for i >= j then a(n) = x(n; j). If there is no such period length then one puts a(n) = 0.

Extensions

Edited: Comment, formula and example reformulated. - Wolfdieter Lang, Jul 13 2014
a(5), a(6), a(8), a(9) corrected by Pontus von Brömssen, May 19 2019
a(10)-a(26) from Giovanni Resta, May 20 2019