cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243866 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing one 1 X 1 tile in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 2, 3, 3, 3, 4, 4, 3, 3, 4, 3, 6, 4, 6, 3, 4, 4, 4, 6, 6, 6, 6, 4, 4, 5, 4, 8, 6, 9, 6, 8, 4, 5, 5, 5, 8, 8, 9, 9, 8, 8, 5, 5, 6, 5, 10, 8, 12, 9, 12, 8, 10, 5, 6, 6, 6, 10, 10, 12, 12, 12, 12, 10, 10, 6, 6, 7, 6, 12, 10, 15
Offset: 1

Views

Author

Keywords

Comments

It appears that the number of equivalence classes of ways of placing one m X m tile in an n X k rectangle under all symmetry operations of the rectangle is T(n-m+1,k-m+1) for m >= 2, n >= m and k >= m, and zero otherwise. - Christopher Hunt Gribble, Oct 17 2014
The sum over each antidiagonal of A243866
= Sum_{j=1..n}(2*j + 1 - (-1)^j)*(2*(n - j + 1) + 1 - (-1)^(n - j + 1))/16
= (n + 2)*(2*n^2 + 8*n + 3 - 3*(-1)^n)/48
- see A006918. - Christopher Hunt Gribble, Apr 01 2015

Examples

			T(n,k) for 1<=n<=11 and 1<=k<=11 is:
    k    1    2    3    4    5    6    7    8    9   10   11 ...
.n
.1       1    1    2    2    3    3    4    4    5    5    6
.2       1    1    2    2    3    3    4    4    5    5    6
.3       2    2    4    4    6    6    8    8   10   10   12
.4       2    2    4    4    6    6    8    8   10   10   12
.5       3    3    6    6    9    9   12   12   15   15   18
.6       3    3    6    6    9    9   12   12   15   15   18
.7       4    4    8    8   12   12   16   16   20   20   24
.8       4    4    8    8   12   12   16   16   20   20   24
.9       5    5   10   10   15   15   20   20   25   25   30
10       5    5   10   10   15   15   20   20   25   25   30
11       6    6   12   12   18   18   24   24   30   30   36
...
		

Crossrefs

Programs

  • Maple
    b := proc (n,k);
    floor((1/2)*n+1/2)*floor((1/2)*k+1/2)
    end proc;
    seq(seq(b(n, k-n+1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = floor((n+1)/2)*floor((k+1)/2)
= (2*n+1-(-1)^n)*(2*k+1-(-1)^k)/4;
T(n,1) = A034851(n,1);
T(n,2) = A226048(n,1);
T(n,3) = A226290(n,1);
T(n,4) = A225812(n,1);
T(n,5) = A228022(n,1);
T(n,6) = A228165(n,1);
T(n,7) = A228166(n,1). - Christopher Hunt Gribble, May 01 2015

Extensions

Terms corrected by Christopher Hunt Gribble, Mar 27 2015