cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006918 a(n) = binomial(n+3, 3)/4 for odd n, n*(n+2)*(n+4)/24 for even n.

Original entry on oeis.org

0, 1, 2, 5, 8, 14, 20, 30, 40, 55, 70, 91, 112, 140, 168, 204, 240, 285, 330, 385, 440, 506, 572, 650, 728, 819, 910, 1015, 1120, 1240, 1360, 1496, 1632, 1785, 1938, 2109, 2280, 2470, 2660, 2870, 3080, 3311, 3542, 3795, 4048, 4324, 4600, 4900, 5200, 5525, 5850, 6201, 6552, 6930
Offset: 0

Views

Author

Keywords

Comments

Maximal number of inconsistent triples in a tournament on n+2 nodes [Kac]. - corrected by Leen Droogendijk, Nov 10 2014
a(n-4) is the number of aperiodic necklaces (Lyndon words) with 4 black beads and n-4 white beads.
a(n-3) is the maximum number of squares that can be formed from n lines, for n>=3. - Erich Friedman; corrected by Leen Droogendijk, Nov 10 2014
Number of trees with diameter 4 where at most 2 vertices 1 away from the graph center have degree > 2. - Jon Perry, Jul 11 2003
a(n+1) is the number of partitions of n into parts of two kinds, with at most two parts of each kind. Also a(n-3) is the number of partitions of n with Durfee square of size 2. - Franklin T. Adams-Watters, Jan 27 2006
Factoring the g.f. as x/(1-x)^2 times 1/(1-x^2)^2 we find that the sequence equals (1, 2, 3, 4, ...) convolved with (1, 0, 2, 0, 3, 0, 4, ...), A000027 convolved with its aerated variant. - Gary W. Adamson, May 01 2009
Starting with "1" = triangle A171238 * [1,2,3,...]. - Gary W. Adamson, Dec 05 2009
The Kn21, Kn22, Kn23, Fi2 and Ze2 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of this sequence, e.g., Kn22(n) = a(n+1) + a(n) + 2*a(n-1) + a(n-2) and Fi2(n) = a(n) + 4*a(n-1) + a(n-2). - Johannes W. Meijer, May 20 2011
For n>3, a(n-4) is the number of (w,x,y,z) having all terms in {1,...,n} and w+x+y+z=|x-y|+|y-z|. - Clark Kimberling, May 23 2012
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w+x+y < |w-x|+|x-y|. - Clark Kimberling, Jun 13 2012
For n>0 number of inequivalent (n-1) X 2 binary matrices, where equivalence means permutations of rows or columns or the symbol set. - Alois P. Heinz, Aug 17 2014
Number of partitions p of n+5 such that p[3] = 2. Examples: a(1)=1 because we have (2,2,2); a(2)=2 because we have (2,2,2,1) and (3,2,2); a(3)=5 because we have (2,2,2,1,1), (2,2,2,2), (3,2,2,1), (3,3,2), and (4,2,2). See the R. P. Stanley reference. - Emeric Deutsch, Oct 28 2014
Sum over each antidiagonal of A243866. - Christopher Hunt Gribble, Apr 02 2015
Number of nonisomorphic outer planar graphs of order n>=3, size n+2, and maximum degree 3. - Christian Barrientos and Sarah Minion, Feb 27 2018
a(n) is the number of 2413-avoiding odd Grassmannian permutations of size n+1. - Juan B. Gil, Mar 09 2023

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 14*x^5 + 20*x^6 + 30*x^7 + 40*x^8 + 55*x^9 + ...
From _Gus Wiseman_, Apr 06 2019: (Start)
The a(4 - 3) = 1 through a(8 - 3) = 14 integer partitions with Durfee square of length 2 are the following (see Franklin T. Adams-Watters's second comment). The Heinz numbers of these partitions are given by A325164.
  (22)  (32)   (33)    (43)     (44)
        (221)  (42)    (52)     (53)
               (222)   (322)    (62)
               (321)   (331)    (332)
               (2211)  (421)    (422)
                       (2221)   (431)
                       (3211)   (521)
                       (22111)  (2222)
                                (3221)
                                (3311)
                                (4211)
                                (22211)
                                (32111)
                                (221111)
The a(0 + 1) = 1 through a(4 + 1) = 14 integer partitions of n into parts of two kinds with at most two parts of each kind are the following (see Franklin T. Adams-Watters's first comment).
  ()()  ()(1)  ()(2)   ()(3)    ()(4)
        (1)()  (2)()   (3)()    (4)()
               ()(11)  (1)(2)   (1)(3)
               (1)(1)  ()(21)   ()(22)
               (11)()  (2)(1)   (2)(2)
                       (21)()   (22)()
                       (1)(11)  ()(31)
                       (11)(1)  (3)(1)
                                (31)()
                                (11)(2)
                                (1)(21)
                                (2)(11)
                                (21)(1)
                                (11)(11)
The a(6 - 5) = 1 through a(10 - 5) = 14 integer partitions whose third part is 2 are the following (see Emeric Deutsch's comment). The Heinz numbers of these partitions are given by A307373.
  (222)  (322)   (332)    (432)     (442)
         (2221)  (422)    (522)     (532)
                 (2222)   (3222)    (622)
                 (3221)   (3321)    (3322)
                 (22211)  (4221)    (4222)
                          (22221)   (4321)
                          (32211)   (5221)
                          (222111)  (22222)
                                    (32221)
                                    (33211)
                                    (42211)
                                    (222211)
                                    (322111)
                                    (2221111)
(End)
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 147.
  • M. Kac, An example of "counting without counting", Philips Res. Reports, 30 (1975), 20*-22* [Special issue in honour of C. J. Bouwkamp].
  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, 2004.
  • K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 186, Theorem 6.11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2nd ed., 2012, Exercise 4.16, pp. 530, 552.
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 33.

Crossrefs

Cf. A000031, A001037, A028723, A051168. a(n) = T(n,4), array T as in A051168.
Cf. A000094.
Cf. A171238. - Gary W. Adamson, Dec 05 2009
Row sums of A173997. - Gary W. Adamson, Mar 05 2010
Column k=2 of A242093. Column k=2 of A115720 and A115994.

Programs

  • Haskell
    a006918 n = a006918_list !! n
    a006918_list = scanl (+) 0 a008805_list
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Magma
    [Floor(Binomial(n+4, 4)/(n+4))-Floor((n+2)/8)*(1+(-1)^n)/2: n in [0..60]]; // Vincenzo Librandi, Nov 10 2014
  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=r),U=Sequence(Z,card>=3)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=11..58) ; # Zerinvary Lajos, Mar 09 2007
    A006918 := proc(n)
        if type(n,'even') then
            n*(n+2)*(n+4)/24 ;
        else
            binomial(n+3,3)/4 ;
        fi ;
    end proc: # R. J. Mathar, May 17 2016
  • Mathematica
    f[n_]:=If[EvenQ[n],(n(n+2)(n+4))/24,Binomial[n+3,3]/4]; Join[{0},Array[f,60]]  (* Harvey P. Dale, Apr 20 2011 *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==2&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    { parttrees(n)=local(pt,k,nk); if (n%2==0, pt=(n/2+1)^2, pt=ceil(n/2)*(ceil(n/2)+1)); pt+=floor(n/2); for (x=1,floor(n/2),pt+=floor(x/2)+floor((n-x)/2)); if (n%2==0 && n>2, pt-=floor(n/4)); k=1; while (3*k<=n, for (x=k,floor((n-k)/2), pt+=floor(k/2); if (x!=k, pt+=floor(x/2)); if ((n-x-k)!=k && (n-x-k)!=x, pt+=floor((n-x-k)/2))); k++); pt }
    
  • PARI
    {a(n) = n += 2; (n^3 - n * (2-n%2)^2) / 24}; /* Michael Somos, Aug 15 2009 */
    

Formula

G.f.: x/((1-x)^2*(1-x^2)^2) = x/((1+x)^2*(1-x)^4).
0, 0, 0, 1, 2, 5, 8, 14, ... has a(n) = (Sum_{k=0..n} floor(k(n-k)/2))/2. - Paul Barry, Sep 14 2003
0, 0, 0, 0, 0, 1, 2, 5, 8, 14, 20, 30, 40, 55, ... has a(n) = binomial(floor(1/2 n), 3) + binomial(floor(1/2 n + 1/2), 3) [Eke]. - N. J. A. Sloane, May 12 2012
a(0)=0, a(1)=1, a(n) = (2/(n-1))*a(n-1) + ((n+3)/(n-1))*a(n-2). - Benoit Cloitre, Jun 28 2004
a(n) = floor(binomial(n+4, 4)/(n+4)) - floor((n+2)/8)(1+(-1)^n)/2. - Paul Barry, Jan 01 2005
a(n+1) = a(n) + binomial(floor(n/2)+2,2), i.e., first differences are A008805. Convolution of A008619 with itself, then shifted right (or A004526 with itself, shifted left by 3). - Franklin T. Adams-Watters, Jan 27 2006
a(n+1) = (A027656(n) + A003451(n+5))/2 with a(1)=0. - Yosu Yurramendi, Sep 12 2008
Linear recurrence: a(n) = 2a(n-1) + a(n-2) - 4a(n-3) + a(n-4) + 2a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
Euler transform of length 2 sequence [2, 2]. - Michael Somos, Aug 15 2009
a(n) = -a(-4-n) for all n in Z.
a(n+1) + a(n) = A002623(n). - Johannes W. Meijer, May 20 2011
a(n) = (n+2)*(2*n*(n+4)-3*(-1)^n+3)/48. - Bruno Berselli, May 21 2011
a(2n) = A007290(n+2). - Jon Perry, Nov 10 2014
G.f.: (1/(1-x)^4-1/(1-x^2)^2)/4. - Herbert Kociemba, Oct 23 2016
E.g.f.: (x*(18 + 9*x + x^2)*cosh(x) + (6 + 15*x + 9*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, Dec 07 2021
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 75/4 - 24*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 69/4 - 24*log(2). (End)

A244306 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing two 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 4, 6, 6, 4, 6, 10, 13, 10, 6, 9, 15, 22, 22, 15, 9, 12, 21, 34, 36, 34, 21, 12, 16, 28, 48, 56, 56, 48, 28, 16, 20, 36, 65, 78, 88, 78, 65, 36, 20, 25, 45, 84, 106, 123, 123, 106, 84, 45, 25, 30, 55, 106, 136, 168, 171, 168, 136, 106, 55, 30
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=11 and 1<=k<=11 is:
    k  1    2    3    4    5    6    7    8    9   10   11 ...
.n
.1     0    1    2    4    6    9   12   16   20   25   30
.2     1    3    6   10   15   21   28   36   45   55   66
.3     2    6   13   22   34   48   65   84  106  130  157
.4     4   10   22   36   56   78  106  136  172  210  254
.5     6   15   34   56   88  123  168  216  274  335  406
.6     9   21   48   78  123  171  234  300  381  465  564
.7    12   28   65  106  168  234  321  412  524  640  777
.8    16   36   84  136  216  300  412  528  672  820  996
.9    20   45  106  172  274  381  524  672  856 1045 1270
10    25   55  130  210  335  465  640  820 1045 1275 1550
11    30   66  157  254  406  564  777  996 1270 1550 1885
		

Crossrefs

Formula

Empirically,
T(n,k) = (4*k^2*n^2 + 2*k^2 + 8*k*n + 2*n^2 - 4*k - 4*n - 1 - (2*k^2 - 4*k - 1)*(-1)^n - (2*n^2 - 4*n - 1)*(-1)^k - (-1)^k*(-1)^n)/32.
T(1,k) = A002620(k) = floor(k^2/4).
T(2,k) = A000217(k) = k*(k+1)/2.
= T(1,k) + T(1,k+1) = floor(k^2/4) + floor((k+1)^2/4).
T(3,k) = 2*A000217(k) + A024206(k-2)
= k*(k+1) + floor((k-1)^2/4) - 1.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 02 2015

A248011 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing three 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 6, 6, 2, 6, 14, 27, 14, 6, 10, 32, 60, 60, 32, 10, 19, 55, 129, 140, 129, 55, 19, 28, 94, 218, 294, 294, 218, 94, 28, 44, 140, 363, 506, 608, 506, 363, 140, 44, 60, 208, 536, 832, 1038, 1038, 832, 536, 208, 60, 85, 285, 785, 1240, 1695
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=9 and 1<=k<=9 is:
   k    1     2     3     4     5     6     7     8     9 ...
n
1       0     0     1     2     6    10    19    28    44
2       0     1     6    14    32    55    94   140   208
3       1     6    27    60   129   218   363   536   785
4       2    14    60   140   294   506   832  1240  1802
5       6    32   129   294   608  1038  1695  2516  3642
6      10    55   218   506  1038  1785  2902  4324  6242
7      19    94   363   832  1695  2902  4703  6992 10075
8      28   140   536  1240  2516  4324  6992 10416 14988
9      44   208   785  1802  3642  6242 10075 14988 21544
		

Crossrefs

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)*(1/96);
    end proc;
    f := seq(seq(b(n, k - n + 1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)/96;
T(1,k) = A005993(k-3) = (k-1)*(2*(k-2)*k + 3*(1-(-1)^k))/24;
T(2,k) = A225972(k) = (k-1)*(2*k*(2*k-1) + 3*(1-(-1)^k))/12;
T(2,k) - T(1,k) = A199771(k-1) and A212561(k) = (k-1)*(6*k^2 + 3*(1-(-1)^k))/24.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 01 2015

A248017 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing five 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 1, 14, 39, 14, 1, 3, 66, 208, 208, 66, 3, 12, 198, 794, 1092, 794, 198, 12, 28, 508, 2196, 3912, 3912, 2196, 508, 28, 66, 1092, 5231, 10626, 13462, 10626, 5231, 1092, 66, 126, 2156, 10808, 24648, 35787, 35787, 24648, 10808, 2156, 126
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=8 and 1<=k<=8 is:
.  k   1      2      3      4      5      6      7       8 ...
n
1      0      0      0      0      1      3     12      28
2      0      0      2     14     66    198    508    1092
3      0      2     39    208    794   2196   5231   10808
4      0     14    208   1092   3912  10626  24648   50344
5      1     66    794   3912  13462  35787  81648  164980
6      3    198   2196  10626  35787  94248 212988  428076
7     12    508   5231  24648  81648 212988 477903  955856
8     28   1092  10808  50344 164980 428076 955856 1906128
		

Crossrefs

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^5*n^5 - 40*k^4*n^4 + 140*k^3*n^3 + 2*k^5 + 20*k^4*n
       + 30*k^3*n^2 + 30*k^2*n^3 + 20*k*n^4 + 2*n^5 - 40*k^4
       - 120*k^3*n - 185*k^2*n^2 - 120*k*n^3 - 40*n^4 + 160*k^3
       - 20*k^2*n - 20*k*n^2 + 160*n^3 - 80*k^2 + 36*k*n - 80*n^2
       + 48*k + 48*n + 45
       + (- 30*k^2*n^3 - 20*k*n^4 - 2*n^5 - 15*k^2*n^2 + 120*k*n^3
          + 40*n^4 + 20*k*n^2 - 160*n^3 + 60*k*n + 80*n^2 - 48*n
          - 45)*(-1)^k
       + (- 2*k^5 - 20*k^4*n - 30*k^3*n^2 + 40*k^4 + 120*k^3*n
          - 15*k^2*n^2 - 160*k^3 + 20*k^2*n + 80*k^2 + 60*k*n
          - 48*k - 45)*(-1)^n
       + (15*k^2*n^2 - 60*k*n + 45)*(-1)^k*(-1)^n)/1920;
    end proc;
    seq(seq(b(n, k-n+1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = (4*k^5*n^5 - 40*k^4*n^4 + 140*k^3*n^3 + 2*k^5 + 20*k^4*n + 30*k^3*n^2 + 30*k^2*n^3 + 20*k*n^4 + 2*n^5 - 40*k^4 - 120*k^3*n - 185*k^2*n^2 - 120*k*n^3 - 40*n^4 + 160*k^3 - 20*k^2*n - 20*k*n^2 + 160*n^3 - 80*k^2 + 36*k*n - 80*n^2 + 48*k + 48*n + 45
+ (- 30*k^2*n^3 - 20*k*n^4 - 2*n^5 - 15*k^2*n^2 + 120*k*n^3 + 40*n^4 + 20*k*n^2 - 160*n^3 + 60*k*n + 80*n^2 - 48*n - 45)*(-1)^k
+ (- 2*k^5 - 20*k^4*n - 30*k^3*n^2 + 40*k^4 + 120*k^3*n - 15*k^2*n^2 - 160*k^3 + 20*k^2*n + 80*k^2 + 60*k*n - 48*k - 45)*(-1)^n
+ (15*k^2*n^2 - 60*k*n + 45)*(-1)^k*(-1)^n)/1920;
T(1,k) = A005995(k-5) = (k-3)*(k-1)*((k-4)*(k-2)*2*k + 15*(1-(-1)^k))/480;
T(2,k) = A222715(k) = (k-2)*(k-1)*((2*k-3)(2*k-1)*2*k + 15*(1-(-1)^k))/120.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 16 2015

A248059 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing four 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 6, 6, 1, 3, 22, 39, 22, 3, 9, 60, 139, 139, 60, 9, 19, 135, 371, 476, 371, 135, 19, 38, 266, 813, 1253, 1253, 813, 266, 38, 66, 476, 1574, 2706, 3254, 2706, 1574, 476, 66, 110, 792, 2770, 5199, 6969, 6969, 5199, 2770, 792, 110, 170, 1245
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=9 and 1<=k<=9 is:
   k    1      2      3      4      5      6      7      8       9 ...
n
1       0      0      0      1      3      9     19     38      66
2       0      1      6     22     60    135    266    476     792
3       0      6     39    139    371    813   1574   2770    4554
4       1     22    139    476   1253   2706   5199   9080   14857
5       3     60    371   1253   3254   6969  13294  23102   37637
6       9    135    813   2706   6969  14841  28197  48852   79401
7      19    266   1574   5199  13294  28197  53381  92266  149645
8      38    476   2770   9080  23102  48852  92266 159216  257878
9      66    792   4554  14857  37637  79401 149645 257878  417156
		

Crossrefs

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384
    end proc;
    seq(seq(b(n, k-n+1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384;
T(1,k) = sum(A005993(i-4),i=1,k)
= sum((i-2)*(2*(i-3)*(i-1) + 3*(1-(-1)^(i-1)))/24, i=1,k);
T(2,k) = A071239(k-1) = (k-1)*k*((k-1)^2+2)/6.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 06 2015
Showing 1-5 of 5 results.