cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248027 Sum over each antidiagonal of A248017.

Original entry on oeis.org

0, 0, 0, 4, 69, 554, 3100, 13288, 47492, 147050, 407568, 1030912, 2419025, 5324684, 11099416, 22065120, 42085344, 77378556, 137705904, 237996060, 400624581, 658434694, 1058839380, 1669118984, 2583424948, 3931632406, 5890783808, 8699293304, 12674960961
Offset: 1

Views

Author

Keywords

Examples

			a(1)..a(9) are formed as follows:
.             Antidiagonals of A248017                 n   a(n)
.                         0                             1      0
.                      0     0                          2      0
.                   0     0     0                       3      0
.                0     2     2     0                    4      4
.             1    14    39    14     1                 5     69
.          3    66   208   208    66     3              6    554
.      12   198   794  1092   794   198    12           7   3100
.   28   508  2196  3912  3912  2196   508    28        8  13288
.66  1092  5231 10626 13462 10626  5231  1092    66     9  47492
		

Crossrefs

Cf. A248017.

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
      (4*k^5*n^5 - 40*k^4*n^4 + 140*k^3*n^3 + 2*k^5 + 20*k^4*n
       + 30*k^3*n^2 + 30*k^2*n^3 + 20*k*n^4 + 2*n^5 - 40*k^4
       - 120*k^3*n - 185*k^2*n^2 - 120*k*n^3 - 40*n^4 + 160*k^3
       - 20*k^2*n - 20*k*n^2 + 160*n^3 - 80*k^2 + 36*k*n - 80*n^2
       + 48*k + 48*n + 45
       + (- 30*k^2*n^3 - 20*k*n^4 - 2*n^5 - 15*k^2*n^2 + 120*k*n^3
          + 40*n^4 + 20*k*n^2 - 160*n^3 + 60*k*n + 80*n^2 - 48*n
          - 45)*(-1)^k
       + (- 2*k^5 - 20*k^4*n - 30*k^3*n^2 + 40*k^4 + 120*k^3*n
          - 15*k^2*n^2 - 160*k^3 + 20*k^2*n + 80*k^2 + 60*k*n - 48*k
          - 45)*(-1)^n
       + (15*k^2*n^2 - 60*k*n + 45)*(-1)^k*(-1)^n)/1920;
    end proc;
    for j to 10000 do
      a := 0;
      for k from j by -1 to 1 do
        n := j-k+1;
        a := a+b(n, k);
      end do;
    printf("%d, ", a);
    end do;

Formula

Empirically, a(n) = (2*n^11 + 22*n^10 + 22*n^9 - 462*n^8 - 1122*n^7 + 7392*n^6 - 3509*n^5 - 25663*n^4 + 48950*n^3 - 22869*n^2 - 65133*n + 41580 - (693*n^5 + 3465*n^4 - 6930*n^3 - 45045*n^2 + 27027*n + 41580)*(-1)^n)/2661120.
Empirical g.f.: -x^4*(x^11 + 2*x^10 - 7*x^9 - 10*x^8 - 28*x^7 - 170*x^6 - 484*x^5 - 538*x^4 - 461*x^3 - 176*x^2 - 45*x - 4) / ((x - 1)^12*(x + 1)^6). - Colin Barker, Apr 21 2015

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 17 2015

A243866 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing one 1 X 1 tile in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 2, 3, 3, 3, 4, 4, 3, 3, 4, 3, 6, 4, 6, 3, 4, 4, 4, 6, 6, 6, 6, 4, 4, 5, 4, 8, 6, 9, 6, 8, 4, 5, 5, 5, 8, 8, 9, 9, 8, 8, 5, 5, 6, 5, 10, 8, 12, 9, 12, 8, 10, 5, 6, 6, 6, 10, 10, 12, 12, 12, 12, 10, 10, 6, 6, 7, 6, 12, 10, 15
Offset: 1

Views

Author

Keywords

Comments

It appears that the number of equivalence classes of ways of placing one m X m tile in an n X k rectangle under all symmetry operations of the rectangle is T(n-m+1,k-m+1) for m >= 2, n >= m and k >= m, and zero otherwise. - Christopher Hunt Gribble, Oct 17 2014
The sum over each antidiagonal of A243866
= Sum_{j=1..n}(2*j + 1 - (-1)^j)*(2*(n - j + 1) + 1 - (-1)^(n - j + 1))/16
= (n + 2)*(2*n^2 + 8*n + 3 - 3*(-1)^n)/48
- see A006918. - Christopher Hunt Gribble, Apr 01 2015

Examples

			T(n,k) for 1<=n<=11 and 1<=k<=11 is:
    k    1    2    3    4    5    6    7    8    9   10   11 ...
.n
.1       1    1    2    2    3    3    4    4    5    5    6
.2       1    1    2    2    3    3    4    4    5    5    6
.3       2    2    4    4    6    6    8    8   10   10   12
.4       2    2    4    4    6    6    8    8   10   10   12
.5       3    3    6    6    9    9   12   12   15   15   18
.6       3    3    6    6    9    9   12   12   15   15   18
.7       4    4    8    8   12   12   16   16   20   20   24
.8       4    4    8    8   12   12   16   16   20   20   24
.9       5    5   10   10   15   15   20   20   25   25   30
10       5    5   10   10   15   15   20   20   25   25   30
11       6    6   12   12   18   18   24   24   30   30   36
...
		

Crossrefs

Programs

  • Maple
    b := proc (n,k);
    floor((1/2)*n+1/2)*floor((1/2)*k+1/2)
    end proc;
    seq(seq(b(n, k-n+1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = floor((n+1)/2)*floor((k+1)/2)
= (2*n+1-(-1)^n)*(2*k+1-(-1)^k)/4;
T(n,1) = A034851(n,1);
T(n,2) = A226048(n,1);
T(n,3) = A226290(n,1);
T(n,4) = A225812(n,1);
T(n,5) = A228022(n,1);
T(n,6) = A228165(n,1);
T(n,7) = A228166(n,1). - Christopher Hunt Gribble, May 01 2015

Extensions

Terms corrected by Christopher Hunt Gribble, Mar 27 2015

A244306 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing two 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 4, 6, 6, 4, 6, 10, 13, 10, 6, 9, 15, 22, 22, 15, 9, 12, 21, 34, 36, 34, 21, 12, 16, 28, 48, 56, 56, 48, 28, 16, 20, 36, 65, 78, 88, 78, 65, 36, 20, 25, 45, 84, 106, 123, 123, 106, 84, 45, 25, 30, 55, 106, 136, 168, 171, 168, 136, 106, 55, 30
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=11 and 1<=k<=11 is:
    k  1    2    3    4    5    6    7    8    9   10   11 ...
.n
.1     0    1    2    4    6    9   12   16   20   25   30
.2     1    3    6   10   15   21   28   36   45   55   66
.3     2    6   13   22   34   48   65   84  106  130  157
.4     4   10   22   36   56   78  106  136  172  210  254
.5     6   15   34   56   88  123  168  216  274  335  406
.6     9   21   48   78  123  171  234  300  381  465  564
.7    12   28   65  106  168  234  321  412  524  640  777
.8    16   36   84  136  216  300  412  528  672  820  996
.9    20   45  106  172  274  381  524  672  856 1045 1270
10    25   55  130  210  335  465  640  820 1045 1275 1550
11    30   66  157  254  406  564  777  996 1270 1550 1885
		

Crossrefs

Formula

Empirically,
T(n,k) = (4*k^2*n^2 + 2*k^2 + 8*k*n + 2*n^2 - 4*k - 4*n - 1 - (2*k^2 - 4*k - 1)*(-1)^n - (2*n^2 - 4*n - 1)*(-1)^k - (-1)^k*(-1)^n)/32.
T(1,k) = A002620(k) = floor(k^2/4).
T(2,k) = A000217(k) = k*(k+1)/2.
= T(1,k) + T(1,k+1) = floor(k^2/4) + floor((k+1)^2/4).
T(3,k) = 2*A000217(k) + A024206(k-2)
= k*(k+1) + floor((k-1)^2/4) - 1.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 02 2015

A248011 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing three 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 6, 6, 2, 6, 14, 27, 14, 6, 10, 32, 60, 60, 32, 10, 19, 55, 129, 140, 129, 55, 19, 28, 94, 218, 294, 294, 218, 94, 28, 44, 140, 363, 506, 608, 506, 363, 140, 44, 60, 208, 536, 832, 1038, 1038, 832, 536, 208, 60, 85, 285, 785, 1240, 1695
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=9 and 1<=k<=9 is:
   k    1     2     3     4     5     6     7     8     9 ...
n
1       0     0     1     2     6    10    19    28    44
2       0     1     6    14    32    55    94   140   208
3       1     6    27    60   129   218   363   536   785
4       2    14    60   140   294   506   832  1240  1802
5       6    32   129   294   608  1038  1695  2516  3642
6      10    55   218   506  1038  1785  2902  4324  6242
7      19    94   363   832  1695  2902  4703  6992 10075
8      28   140   536  1240  2516  4324  6992 10416 14988
9      44   208   785  1802  3642  6242 10075 14988 21544
		

Crossrefs

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)*(1/96);
    end proc;
    f := seq(seq(b(n, k - n + 1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)/96;
T(1,k) = A005993(k-3) = (k-1)*(2*(k-2)*k + 3*(1-(-1)^k))/24;
T(2,k) = A225972(k) = (k-1)*(2*k*(2*k-1) + 3*(1-(-1)^k))/12;
T(2,k) - T(1,k) = A199771(k-1) and A212561(k) = (k-1)*(6*k^2 + 3*(1-(-1)^k))/24.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 01 2015

A248059 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing four 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 6, 6, 1, 3, 22, 39, 22, 3, 9, 60, 139, 139, 60, 9, 19, 135, 371, 476, 371, 135, 19, 38, 266, 813, 1253, 1253, 813, 266, 38, 66, 476, 1574, 2706, 3254, 2706, 1574, 476, 66, 110, 792, 2770, 5199, 6969, 6969, 5199, 2770, 792, 110, 170, 1245
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=9 and 1<=k<=9 is:
   k    1      2      3      4      5      6      7      8       9 ...
n
1       0      0      0      1      3      9     19     38      66
2       0      1      6     22     60    135    266    476     792
3       0      6     39    139    371    813   1574   2770    4554
4       1     22    139    476   1253   2706   5199   9080   14857
5       3     60    371   1253   3254   6969  13294  23102   37637
6       9    135    813   2706   6969  14841  28197  48852   79401
7      19    266   1574   5199  13294  28197  53381  92266  149645
8      38    476   2770   9080  23102  48852  92266 159216  257878
9      66    792   4554  14857  37637  79401 149645 257878  417156
		

Crossrefs

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384
    end proc;
    seq(seq(b(n, k-n+1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384;
T(1,k) = sum(A005993(i-4),i=1,k)
= sum((i-2)*(2*(i-3)*(i-1) + 3*(1-(-1)^(i-1)))/24, i=1,k);
T(2,k) = A071239(k-1) = (k-1)*k*((k-1)^2+2)/6.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 06 2015
Showing 1-5 of 5 results.