cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243871 Number of Dyck paths of semilength n having exactly 1 occurrence of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 3, 10, 35, 124, 454, 1684, 6305, 23781, 90209, 343809, 1315499, 5050144, 19442366, 75034354, 290203076, 1124511549, 4364693311, 16966567970, 66041815437, 257378634365, 1004167036295, 3921726323436, 15330264382726, 59977821022143, 234839855088313
Offset: 5

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Crossrefs

Column k=1 of A243881.
Column k=738 of A243827.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 2)))
        end:
    a:= n-> coeff(b(2*n, 0, 1), z, 1):
    seq(a(n), n=5..40);

Formula

a(n) = (2*(2*n-17) *(2*n-19) *(2*n-9) *a(n-1) -(2*n-19) *(6*n^2-75*n+208) *a(n-4) +2*(2*n-17) *(10*n^2-136*n+387) *a(n-5) -(2*n-19) *(6*n^2-75*n+212) *a(n-8) +(32*n^3-704*n^2+4940*n-10850) *a(n-9) -(2*n-17) *(2*n-9) *(n-14) *a(n-10) -(2*n-19) *(n-8) *(2*n-9) *a(n-12) +2*(2*n-9) *(2*n^2-36*n+161) *a(n-13) -(n-10) *(2*n-17) *(2*n-9) *a(n-14)) / ((2*n-17) *(2*n-19) *(n-4)).