cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A243889 Primes of the form 2*n^2+30*n+13.

Original entry on oeis.org

661, 1201, 2281, 2713, 3181, 4801, 5413, 8221, 9013, 12541, 13513, 17761, 18913, 20101, 32413, 33961, 38821, 51421, 72481, 91921, 94513, 108013, 110821, 134581, 137713, 153913, 167521, 211801, 223681, 265621, 274441, 335281, 345181, 365413, 370561, 440761, 560641
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A142104.
Conjecture: except 2281, 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 199 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. A142104.
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..800] | IsPrime(a) where a is 2*n^2+30*n+13];
  • Mathematica
    Select[Table[2 n^2 + 30 n + 13, {n, 1000}], PrimeQ]

A243890 Primes of the form 2*n^2+38*n+17.

Original entry on oeis.org

101, 149, 257, 317, 449, 521, 677, 761, 941, 1697, 1949, 2081, 2357, 2801, 2957, 3449, 3797, 4349, 4937, 6221, 6449, 6917, 7649, 7901, 8681, 9221, 9497, 10061, 10937, 12161, 13121, 13781, 15149, 16217, 17321, 18077, 18461, 20441, 20849, 25601, 26981, 27449
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A040117.
Conjecture: except 521, 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 327 is a square. - Vincenzo Librandi, Jun 29 2016

Crossrefs

Cf. A040117.
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 2*n^2+38*n+17];
  • Mathematica
    Select[Table[2 n^2 + 38 n + 17, {n, 800}], PrimeQ]

A243891 Primes of the form 2*n^2 + 62*n + 29.

Original entry on oeis.org

233, 389, 653, 953, 1061, 1289, 1409, 2069, 2213, 4253, 4649, 5273, 6869, 8933, 9209, 10061, 10949, 13829, 15569, 16661, 17033, 17789, 24413, 26693, 28109, 32573, 35729, 36269, 37361, 42473, 44249, 46061, 48533, 51713, 52361, 55661, 56333, 57689, 59753
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A040117.
Conjecture: except 4253, 2^a(n) - 1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 903 is a square. - Vincenzo Librandi, Jun 29 2016

Crossrefs

Cf. A040117.
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 2*n^2+62*n+29];
  • Mathematica
    Select[Table[2 n^2 + 62 n + 29, {n, 200}], PrimeQ]

A243957 Primes of the form 2*n^2+66*n+31.

Original entry on oeis.org

499, 787, 1471, 1867, 2767, 3271, 4999, 5647, 8599, 13099, 14107, 16231, 19687, 22171, 24799, 33547, 40099, 43591, 52951, 63211, 65371, 67567, 79087, 88951, 94099, 99391, 104827, 107599, 116131, 119047, 124987, 131071, 153499, 160231, 167107, 177691, 192307
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Primes of the form 36*A056115(k)+31.
Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.

Crossrefs

Cf. A056115, A142110 (supersequence).
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+66*n+31];
  • Mathematica
    Select[Table[2 n^2 + 66 n + 31, {n, 800}], PrimeQ]

A243958 Primes of the form 2*n^2+86*n+41.

Original entry on oeis.org

317, 521, 857, 977, 1229, 1361, 1637, 2081, 2237, 2729, 3257, 3821, 4217, 4421, 5501, 6197, 8501, 9341, 9629, 12401, 13397, 14081, 15137, 15497, 16229, 18521, 18917, 20129, 21377, 22229, 23537, 23981, 26261, 26729, 29129, 31121, 32141, 35837, 36929, 39161
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A040117.
Conjecture: except 521, 2^a(n)-1 is not prime; in other words, these primes are included in A054723.

Crossrefs

Cf. A040117.
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 2*n^2+86*n+41];
  • Mathematica
    Select[Table[2 n^2 + 86 n + 41, {n, 800}], PrimeQ]
Showing 1-5 of 5 results.