cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243893 a(n) = prime(k-1) with k = n^2 + prime(n)^2.

Original entry on oeis.org

7, 37, 137, 311, 829, 1249, 2269, 2939, 4483, 7411, 8681, 12653, 15877, 17827, 21673, 28087, 35393, 38317, 46957, 53327, 56897, 67493, 75269, 87523, 105143, 115057, 120427, 130811, 136547, 147863, 189067, 202481, 222991, 230393, 267401, 275677
Offset: 1

Views

Author

Freimut Marschner, Jun 14 2014

Keywords

Comments

prime(k-1) is also the largest prime number < (n^2 + prime(n)^2). Remark : Largest prime number < n^2 is A053001. Largest prime number < n^3 is A077037.

Examples

			n=1, 1^2=1, prime(1)^2 = 4, 1 + 4 = 5, 5 - 1= 4, prime(4) = 7 ;
n=2, 2^2=4, prime(2)^2 = 9, 4 + 9= 13, 13 - 1= 12, prime(12) = 37.
		

Crossrefs

Cf. A000290 (squares n^2), A000040 (prime(n)), A001248 (prime(n)^2), A106587 (n^2 + prime(n)^2).

Programs

  • Mathematica
    a[n_]:=Prime[(n^2 + Prime[n]^2) - 1]; Array[a,36] (* Stefano Spezia, Mar 12 2025 *)

Formula

a(n) = prime((n^2 + prime(n)^2) - 1) = prime(A106587(n) - 1).