cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243901 Positive integers n such that p_{n+i} is a quadratic residue modulo p_{n+j} for any distinct i and j among 0, 1, ..., 6.

Original entry on oeis.org

178633, 2355662, 4892172, 5702347, 9256159, 9572343, 13837265, 15147032, 15429648, 15822376, 16603935, 20925043, 22128672, 22462201, 22689295, 27145167, 28031877, 28470899, 29246422, 30772941, 31211796, 32372758
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 14 2014

Keywords

Comments

Conjecture: For any integer m > 0, there are infinitely many positive integers n such that p_{n+i} is a quadratic residue modulo p_{n+j} for any distinct i and j among 0, 1, ..., m.

Examples

			a(1) = 178633 since any 6 primes among the 7 integers prime(178633) = 2434589, prime(178634) = 2434609, prime(178635) = 2434613, prime(178636) = 2434657, prime(178637) = 2434669, prime(178638) = 2434673 and prime(178639) = 2434681 are quadratic residues modulo the remaining one of the 7 primes.
		

Crossrefs

Programs

  • Mathematica
    q[i_,j_]:=JacobiSymbol[Prime[i],Prime[j]]
    m=0;Do[Do[If[q[n+i,n+j]==-1,Goto[aa]],{i,0,6},{j,0,6}]; m=m+1;Print[m," ",n];Label[aa];Continue,{n,1,32372758}]
    Reap[ Do[ If[ Catch[ Do[ If[ JacobiSymbol[Prime[n + i], Prime[n + j]] != 1, Throw@False], {i, 0, 5}, {j, i + 1, 6}]; True], Sow[n]], {n, 32372758}]][[2, 1]] (* Michael Somos, Jun 15 2014 *)