cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243904 Semiprimes of the form p^2 + pq + q^2, where p, q are consecutive primes.

Original entry on oeis.org

49, 247, 679, 973, 2701, 5293, 7509, 10801, 12297, 15553, 17337, 25963, 29407, 33079, 34993, 36967, 43249, 53877, 67501, 71157, 76809, 97201, 117613, 155953, 181573, 225237, 270049, 292033, 297679, 314977, 350917, 380217, 477607, 492091, 514213, 632047, 648679
Offset: 1

Views

Author

K. D. Bajpai, Jun 14 2014

Keywords

Comments

Intersection of A001358 and A003136.

Examples

			247 is in the sequence because 7^2 + 7*11 + 11^2 = 247 = 13*19, which is semiprime.
679 is in the sequence because 13^2 + 13*17 + 17^2 = 679 = 7*97, which is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A243904:= proc() local k, p, q; p:=ithprime(n); q:=ithprime(n+1); k:=p^2 + p*q + q^2;  if bigomega(k)=2 then RETURN (k); fi; end: seq(A243904 (), n=1..200);
  • Mathematica
    Select[Table[Prime[n]^2 + Prime[n] Prime[n + 1] + Prime[n + 1]^2, {n, 100}], PrimeOmega[#] == 2 &]
  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List(),p=3,t); forprime(q=5,, t=p^2+p*q+q^2; if(t>lim, break); if(issemi(t), listput(v,t)); p=q); Vec(v) \\ Charles R Greathouse IV, Jul 05 2017