A243911 Least number k such that n^k ends in two identical digits, or 0 if no such number exists.
18, 0, 9, 0, 0, 0, 6, 0, 2, 1, 2, 17, 3, 0, 0, 11, 0, 5, 2, 0, 1, 0, 0, 0, 0, 0, 14, 0, 2, 7, 0, 1, 7, 0, 0, 7, 2, 5, 2, 0, 3, 0, 1, 0, 0, 0, 9, 0, 2, 0, 18, 3, 9, 1, 0, 0, 6, 5, 2, 0, 2, 0, 3, 0, 1, 0, 0, 0, 2, 3, 7, 11, 0, 0, 0, 1, 14, 5, 2, 0, 0, 0, 7, 0, 0, 0, 1, 0, 2, 9, 3, 0, 11
Offset: 2
Examples
2^18 = 262144 ends in two of the same digit. Thus a(2) = 18.
Programs
-
Python
def b(n,p): lst = [] count = 0 lst1 = [] for i in range(1,5**(n+2)): st = str(p**i) if len(st) >= n: if int(st[len(st)-n:len(st)]) not in lst: lst.append(int(st[len(st)-n:len(st)])) lst1.append(i) else: return len(lst)+min(lst1) def a(p): for i in range(1,b(2,p)+2): st = str(p**i) if int(st[len(st)-2:len(st)])%11==0: return i p = 2 while p < 100: if a(p): print(a(p),end=', ') else: print(0,end=', ') p += 1
Comments