cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243917 Number of non-twin divisors of n.

Original entry on oeis.org

1, 2, 0, 1, 2, 2, 2, 2, 1, 4, 2, 1, 2, 4, 1, 3, 2, 4, 2, 4, 2, 4, 2, 2, 3, 4, 2, 4, 2, 5, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 3, 4, 2, 4, 3, 6, 2, 4, 2, 6, 4, 6, 2, 4, 2, 4, 2, 4, 2, 5, 4, 6, 2, 4, 2, 6, 2, 6, 2, 4, 3, 4, 4, 6, 2, 6, 3, 4, 2, 5, 4, 4, 2, 6, 2, 9, 4, 4, 2, 4, 4, 6
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 15 2014

Keywords

Comments

A divisor k of n is non-twin if neither the positive values of k - 2 nor k + 2 divide n.

Examples

			The positive divisors of 12 are: 1, 2, 3, 4, 6, 12. Of these, 1 and 3 are twin divisors, 2, 4 and 6 are also twin divisors. The unique non-twin divisor is therefore 12. So a(12) = the number of these divisors, which is 1.
		

Crossrefs

Programs

Formula

a(n) = A000005(n) - A243865(n).

Extensions

Corrected by Michel Marcus, Jun 27 2014