A243917 Number of non-twin divisors of n.
1, 2, 0, 1, 2, 2, 2, 2, 1, 4, 2, 1, 2, 4, 1, 3, 2, 4, 2, 4, 2, 4, 2, 2, 3, 4, 2, 4, 2, 5, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 3, 4, 2, 4, 3, 6, 2, 4, 2, 6, 4, 6, 2, 4, 2, 4, 2, 4, 2, 5, 4, 6, 2, 4, 2, 6, 2, 6, 2, 4, 3, 4, 4, 6, 2, 6, 3, 4, 2, 5, 4, 4, 2, 6, 2, 9, 4, 4, 2, 4, 4, 6
Offset: 1
Keywords
Examples
The positive divisors of 12 are: 1, 2, 3, 4, 6, 12. Of these, 1 and 3 are twin divisors, 2, 4 and 6 are also twin divisors. The unique non-twin divisor is therefore 12. So a(12) = the number of these divisors, which is 1.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a243917[n_Integer] := Length[Select[Divisors[n], If[And[# <= 2 || Divisible[n, # - 2] == False, Divisible[n, # + 2] == False], True, False] &]]; a243917 /@ Range[120] (* Michael De Vlieger, Aug 17 2014 *) nntd[n_]:=Module[{d=Select[Divisors[n],#>2&],t},t=Count[d,?(!Divisible[ n, #-2] && !Divisible[ n,#+2]&)]; If[!Divisible[ n,3],t++]; If[ Divisible[ n,2] && !Divisible[n,4],t++];t]; Array[nntd,100] (* _Harvey P. Dale, May 27 2016 *)
-
PARI
a(n) = sumdiv(n, d, (((d<=2) || (n % (d-2))) && (n % (d+2)))); \\ Michel Marcus, Jun 25 2014
Extensions
Corrected by Michel Marcus, Jun 27 2014
Comments