A243924 Irregular triangular array of taxicab norms of Gaussian integers in array G generated as at Comments.
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 3, 3, 4, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 6, 6, 6
Offset: 1
Examples
First 6 rows of G: 0 1 2 .. i 3 .. 2i .. i+1 ... -1 4 .. 3i .. 1+2i .. -2 .. i+2 .. -1+i . -i 5 .. 4i .. 1+3i .. -3 .. 2+2i . -2+i . -2i . i+3 . -1+2i . -1-i . 1-i The corresponding taxicab norms follow: 0 1 1 2 1 2 2 3 2 2 1 3 3 3 4 3 3 2 3 2 4 2 4 4 4 5 Each row is then arranged in nondecreasing order: 0 1 1 2 1 2 2 3 1 2 2 3 3 3 4 2 2 2 3 3 3 4 4 4 4 5
Links
- Clark Kimberling, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
z = 10; g[1] = {0}; f1[x_] := x + 1; f2[x_] := I*x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] Table[g[n], {n, 1, z}] (* the array G *) v = Table[Abs[Re[g[n]]] + Abs[Im[g[n]]], {n, 1, z}] w = Map[Sort, v] (* A243924, rows *) w1 = Flatten[w] (* A243924, sequence *)
Comments