A243925 Irregular triangular array of denominators of the positive rational numbers ordered as in Comments.
1, 1, 1, 1, 1, 3, 1, 1, 2, 3, 1, 1, 5, 2, 3, 1, 1, 1, 2, 3, 5, 2, 3, 1, 3, 1, 3, 7, 7, 5, 3, 5, 2, 3, 1, 3, 4, 5, 5, 4, 7, 7, 5, 3, 5, 2, 3, 1, 1, 5, 7, 5, 13, 7, 13, 9, 5, 4, 7, 7, 7, 5, 3, 5, 2, 3, 1, 1, 1, 3, 5, 4, 6, 6, 4, 9, 9, 7, 8, 5, 13, 7, 13, 9, 5
Offset: 1
Examples
First 7 rows of the array of rationals: 1/1 -2/1 ... 2/1 -1/1 ... 3/1 -2/3 ... 0/1 ... 4/1 -1/2 ... 1/3 ... 5/1 -6/1 ... -2/5 .. 1/2 ... 4/3 ... 6/1 -5/1 ... -4/1 .. -3/2 .. -1/3 .. 3/5 .. 3/2 .. 7/3 .. 7/1 The denominators, by rows: 1,1,1,1,1,3,1,1,2,3,1,1,5,2,3,1,1,1,2,3,5,2,3,1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -2/x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] u = Table[g[n], {n, 1, z}] v = Delete[Flatten[u], 12] Denominator[v] (* A243925 *) Numerator[v] (* A243926 *)
Comments