A243940 Number of partitions of n^2 into exactly 4 prime numbers.
0, 0, 1, 3, 5, 15, 13, 50, 24, 126, 50, 258, 78, 508, 115, 899, 176, 1562, 240, 2383, 299, 3616, 440, 5733, 547, 7585, 664, 10705, 863, 16259, 1033, 19591, 1234, 25943, 1566, 37879, 1860, 43405, 1976, 55700, 2529, 78989, 2942, 86261, 3162, 106212, 3867, 148771
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory): b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t) +(p-> `if`(p>n, 0, b(n-p, i, t-1)))(ithprime(i)))) end: a:= n-> b(n^2, pi(n^2), 4): seq(a(n), n=1..40); # Alois P. Heinz, Jun 15 2014
-
Mathematica
$RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + Function[{p}, If[p > n, 0, b[n - p, i, t - 1]]][Prime[i]]]]; a[n_] := b[n^2, PrimePi[n^2], 4]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)