cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243940 Number of partitions of n^2 into exactly 4 prime numbers.

Original entry on oeis.org

0, 0, 1, 3, 5, 15, 13, 50, 24, 126, 50, 258, 78, 508, 115, 899, 176, 1562, 240, 2383, 299, 3616, 440, 5733, 547, 7585, 664, 10705, 863, 16259, 1033, 19591, 1234, 25943, 1566, 37879, 1860, 43405, 1976, 55700, 2529, 78989, 2942, 86261, 3162, 106212, 3867, 148771
Offset: 1

Views

Author

Olivier Gérard, Jun 15 2014

Keywords

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t) +(p-> `if`(p>n, 0,
             b(n-p, i, t-1)))(ithprime(i))))
        end:
    a:= n-> b(n^2, pi(n^2), 4):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 15 2014
  • Mathematica
    $RecursionLimit = 1000; b[n_, i_, t_] :=  b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + Function[{p}, If[p > n, 0, b[n - p, i, t - 1]]][Prime[i]]]]; a[n_] := b[n^2, PrimePi[n^2], 4]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)