A243965 Number of Dyck paths of semilength n such that both consecutive patterns of Dyck paths of semilength 2 occur at least once.
0, 0, 0, 0, 2, 10, 44, 179, 702, 2701, 10278, 38866, 146450, 550817, 2070116, 7779655, 29248932, 110047905, 414446256, 1562538171, 5898049688, 22290789562, 84351810044, 319609669957, 1212552963576, 4606078246284, 17518748817596, 66712192842068, 254346235738120
Offset: 0
Keywords
Examples
a(4) = 2: 10101100, 11001010. a(5) = 10: 1010101100, 1010110010, 1010111000, 1011001010, 1100101010, 1100110100, 1101001100, 1101011000, 1110001010, 1110010100. Here 1=Up=(1,1), 0=Down=(1,-1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Recurrence (of order 10)
Programs
-
Maple
b:= proc(x, y, t, s) option remember; `if`(y<0 or y>x, 0, `if`(x=0, `if`(s={}, 1, 0), `if`(nops(s)>x, 0, add( b(x-1, y-1+2*j, irem(2*t+j, 8), s minus {2*t+j}), j=0..1)))) end: a:= n-> b(2*n, 0, 0, {10, 12}): seq(a(n), n=0..30);
-
Mathematica
b[x_, y_, t_, s_] := b[x, y, t, s] = If[y<0 || y>x, 0, If[x == 0, If[s == {}, 1, 0], If[Length[s] > x, 0, Sum[b[x - 1, y - 1 + 2 j, Mod[2t + j, 8], s ~Complement~ {2t + j}], {j, 0, 1}]]]]; a[n_] := b[2n, 0, 0, {10, 12}]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
Formula
a(n) ~ 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 18 2014
Comments