cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243965 Number of Dyck paths of semilength n such that both consecutive patterns of Dyck paths of semilength 2 occur at least once.

Original entry on oeis.org

0, 0, 0, 0, 2, 10, 44, 179, 702, 2701, 10278, 38866, 146450, 550817, 2070116, 7779655, 29248932, 110047905, 414446256, 1562538171, 5898049688, 22290789562, 84351810044, 319609669957, 1212552963576, 4606078246284, 17518748817596, 66712192842068, 254346235738120
Offset: 0

Views

Author

Alois P. Heinz, Jun 16 2014

Keywords

Comments

The consecutive patterns 1010, 1100 are counted. Here 1=Up=(1,1), 0=Down=(1,-1).

Examples

			a(4) = 2: 10101100, 11001010.
a(5) = 10: 1010101100, 1010110010, 1010111000, 1011001010, 1100101010, 1100110100, 1101001100, 1101011000, 1110001010, 1110010100.
Here 1=Up=(1,1), 0=Down=(1,-1).
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t, s) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, `if`(s={}, 1, 0), `if`(nops(s)>x, 0, add(
          b(x-1, y-1+2*j, irem(2*t+j, 8), s minus {2*t+j}), j=0..1))))
        end:
    a:= n->  b(2*n, 0, 0, {10, 12}):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_, s_] := b[x, y, t, s] = If[y<0 || y>x, 0, If[x == 0, If[s == {}, 1, 0], If[Length[s] > x, 0, Sum[b[x - 1, y - 1 + 2 j, Mod[2t + j, 8], s ~Complement~ {2t + j}], {j, 0, 1}]]]];
    a[n_] := b[2n, 0, 0, {10, 12}];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)

Formula

a(n) ~ 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 18 2014