cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243968 Decimal expansion of 'eta', a constant related to the second order quadratic recurrence q(0)=q(1)=1, q(n)=q(n-2)*(q(n-1)+1).

Original entry on oeis.org

1, 4, 2, 9, 8, 1, 5, 4, 9, 9, 9, 0, 0, 9, 9, 4, 5, 1, 9, 7, 0, 3, 9, 0, 6, 4, 4, 3, 7, 6, 2, 7, 6, 0, 9, 3, 1, 2, 6, 9, 2, 3, 8, 1, 5, 8, 8, 4, 7, 2, 5, 2, 4, 2, 3, 9, 5, 4, 8, 2, 1, 9, 4, 9, 6, 9, 6, 3, 6, 2, 6, 5, 4, 5, 4, 3, 7, 2, 8, 5, 6, 8, 8, 1, 1, 5, 8, 3, 6, 8, 9, 3, 8, 4, 7, 8, 1, 6, 0
Offset: 1

Views

Author

Jean-François Alcover, Jun 16 2014

Keywords

Examples

			1.42981549990099451970390644376276...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, pp. 445-446.

Crossrefs

Cf. A006277, A243967 (xi).

Programs

  • Mathematica
    digits = 99; n0 = 5; dn = 5; Clear[q]; q[0] = q[1] = 1; q[n_] := q[n] = q[n - 2] (q[n - 1] + 1); eta[n_] := eta[n] = ((q[n] - 1)^(-1/2 - Sqrt[5]/2)*(q[n + 1] - 1))^(-(1/((1/2*(1 - Sqrt[5]))^n*Sqrt[5]))); eta[n0]; eta[n = n0 + dn]; While[RealDigits[eta[n], 10, digits + 10] != RealDigits[eta[n - 5], 10, digits + 10], Print["n = ", n]; n = n + dn]; RealDigits[eta[n], 10, digits] // First

Formula

q(n) = floor(xi^(phi^n)*eta^((1-phi)^n)) where phi is the golden ratio (1+sqrt(5))/2.