cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006277 a(n) = (a(n-1) + 1)*a(n-2).

Original entry on oeis.org

1, 1, 2, 3, 8, 27, 224, 6075, 1361024, 8268226875, 11253255215681024, 93044467205527772332546875, 1047053135870867396062743192203958743681024, 97422501162981936223682742789520433197690551802305989766350860546875
Offset: 0

Views

Author

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.7 Cahen's Constant p. 435 and Section 6.10 Quadratic recurrence constants pp. 445-446.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006277_list = 1 : scanl ((*) . (+ 1)) 2 a006277_list -- Jack Willis, Dec 22 2013
    
  • Magma
    [n le 2 select 1 else (Self(n-1) + 1)*Self(n-2): n in [1..15]]; // Vincenzo Librandi, May 23 2019
  • Maple
    A006277 := proc(n) options remember; if n <= 1 then RETURN(1) else A006277(n-2)*(A006277(n-1)+1); fi; end;
  • Mathematica
    a=b=1;lst={a,b};Do[AppendTo[lst,c=a*b+a];a=b;b=c,{n,0,12}];lst (* Vladimir Joseph Stephan Orlovsky, May 06 2010 *)
    RecurrenceTable[{a[n]==a[n-2]*(1+a[n-1]),a[0]==1,a[1]==1},a,{n,0,15}] (* Vaclav Kotesovec, Jan 19 2015 *)
    nxt[{a_,b_}]:={b,a(b+1)}; NestList[nxt,{1,1},15][[All,1]] (* Harvey P. Dale, Jun 20 2021 *)
  • Maxima
    a(n) := if (n = 0 or n = 1) then 1 else a(n-2)*(a(n-1)+1) $
    makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 23 2017 */
    

Formula

Sum_{n>=0} 1/a(n) = 3. - Gerald McGarvey, Jul 20 2004
a(n) = floor(A243967^(phi^n) * A243968^((1-phi)^n)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Jan 19 2015
Sum_{k>=0} (-1)^k/(a(k)*a(k+1)) = A242724. - Amiram Eldar, May 15 2021

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, May 06 2010

A243967 Decimal expansion of 'xi', a constant related to the second order quadratic recurrence q(0)=q(1)=1, q(n)=q(n-2)*(q(n-1)+1).

Original entry on oeis.org

1, 3, 5, 0, 5, 0, 6, 1, 2, 5, 1, 3, 1, 1, 7, 1, 5, 3, 0, 3, 3, 1, 8, 3, 7, 6, 7, 7, 2, 2, 6, 2, 4, 1, 5, 9, 7, 2, 5, 2, 3, 0, 6, 9, 8, 0, 3, 1, 3, 0, 1, 9, 2, 5, 5, 8, 6, 0, 9, 7, 8, 4, 0, 6, 1, 6, 4, 5, 0, 7, 4, 0, 0, 8, 8, 8, 8, 1, 5, 1, 3, 5, 8, 8, 9, 8, 3, 4, 8, 3, 5, 5, 6, 8, 5, 1, 5, 1, 1
Offset: 1

Views

Author

Jean-François Alcover, Jun 16 2014

Keywords

Examples

			1.3505061251311715303318376772262415972523...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, pp. 445-446.

Crossrefs

Cf. A006277, A243968 (eta).

Programs

  • Mathematica
    digits = 99; n0 = 5; dn = 5; Clear[q]; q[0] = q[1] = 1; q[n_] := q[n] = q[n - 2] (q[n - 1] + 1); xi[n_] := xi[n] = ((q[n] - 1)^(1/2*( Sqrt[5] - 1))*(q[n + 1] - 1))^((1/2*( Sqrt[5] - 1))^n/Sqrt[5]); xi[n0]; xi[n = n0 + dn]; While[RealDigits[xi[n], 10, digits + 10] != RealDigits[xi[n - 5], 10, digits + 10], Print["n = ", n];  n = n + dn]; RealDigits[xi[n], 10, digits] // First

Formula

q(n) = floor(xi^(phi^n)*eta^((1-phi)^n)) where phi is the golden ratio (1+sqrt(5))/2 and eta is A243968.
Showing 1-2 of 2 results.