cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A242724 Decimal expansion of a constant associated with self-generating continued fractions and Cahen's constant.

Original entry on oeis.org

6, 2, 9, 4, 6, 5, 0, 2, 0, 4, 5, 5, 1, 8, 6, 7, 7, 1, 8, 3, 1, 2, 9, 4, 2, 2, 9, 1, 0, 7, 2, 3, 2, 1, 2, 2, 6, 9, 3, 5, 3, 0, 0, 6, 9, 2, 3, 9, 0, 8, 8, 0, 5, 6, 1, 7, 5, 7, 0, 4, 5, 6, 1, 3, 2, 9, 8, 3, 4, 7, 4, 4, 3, 6, 1, 7, 3, 6, 2, 4, 9, 1, 9, 5, 3, 9, 9, 8, 8, 7, 7, 9, 4, 0, 7, 3, 7, 3, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Comments

This constant is known to be transcendental.
Called the "Davison-Shallit constant" by Finch (2003) and Sondow (2021). - Amiram Eldar, Mar 19 2024

Examples

			0.62946502045518677183129422910723212269353...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.7, p. 435.

Crossrefs

Programs

  • Mathematica
    digits = 100; Clear[q, s]; q[n_] := q[n] = q[n - 2]*(q[n-1] + 1); q[0] = q[1] = 1; s[k_] := s[k] = Sum[(-1)^j/(q[j]*q[j+1]), {j, 0, k}] // N[#, digits+5]&; s[dk = 5]; s[k = 2*dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First

Formula

Equals Sum_{k>=0} (-1)^k/(A006277(k)*A006277(k+1)). - Amiram Eldar, Mar 19 2024

A243967 Decimal expansion of 'xi', a constant related to the second order quadratic recurrence q(0)=q(1)=1, q(n)=q(n-2)*(q(n-1)+1).

Original entry on oeis.org

1, 3, 5, 0, 5, 0, 6, 1, 2, 5, 1, 3, 1, 1, 7, 1, 5, 3, 0, 3, 3, 1, 8, 3, 7, 6, 7, 7, 2, 2, 6, 2, 4, 1, 5, 9, 7, 2, 5, 2, 3, 0, 6, 9, 8, 0, 3, 1, 3, 0, 1, 9, 2, 5, 5, 8, 6, 0, 9, 7, 8, 4, 0, 6, 1, 6, 4, 5, 0, 7, 4, 0, 0, 8, 8, 8, 8, 1, 5, 1, 3, 5, 8, 8, 9, 8, 3, 4, 8, 3, 5, 5, 6, 8, 5, 1, 5, 1, 1
Offset: 1

Views

Author

Jean-François Alcover, Jun 16 2014

Keywords

Examples

			1.3505061251311715303318376772262415972523...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, pp. 445-446.

Crossrefs

Cf. A006277, A243968 (eta).

Programs

  • Mathematica
    digits = 99; n0 = 5; dn = 5; Clear[q]; q[0] = q[1] = 1; q[n_] := q[n] = q[n - 2] (q[n - 1] + 1); xi[n_] := xi[n] = ((q[n] - 1)^(1/2*( Sqrt[5] - 1))*(q[n + 1] - 1))^((1/2*( Sqrt[5] - 1))^n/Sqrt[5]); xi[n0]; xi[n = n0 + dn]; While[RealDigits[xi[n], 10, digits + 10] != RealDigits[xi[n - 5], 10, digits + 10], Print["n = ", n];  n = n + dn]; RealDigits[xi[n], 10, digits] // First

Formula

q(n) = floor(xi^(phi^n)*eta^((1-phi)^n)) where phi is the golden ratio (1+sqrt(5))/2 and eta is A243968.

A243968 Decimal expansion of 'eta', a constant related to the second order quadratic recurrence q(0)=q(1)=1, q(n)=q(n-2)*(q(n-1)+1).

Original entry on oeis.org

1, 4, 2, 9, 8, 1, 5, 4, 9, 9, 9, 0, 0, 9, 9, 4, 5, 1, 9, 7, 0, 3, 9, 0, 6, 4, 4, 3, 7, 6, 2, 7, 6, 0, 9, 3, 1, 2, 6, 9, 2, 3, 8, 1, 5, 8, 8, 4, 7, 2, 5, 2, 4, 2, 3, 9, 5, 4, 8, 2, 1, 9, 4, 9, 6, 9, 6, 3, 6, 2, 6, 5, 4, 5, 4, 3, 7, 2, 8, 5, 6, 8, 8, 1, 1, 5, 8, 3, 6, 8, 9, 3, 8, 4, 7, 8, 1, 6, 0
Offset: 1

Views

Author

Jean-François Alcover, Jun 16 2014

Keywords

Examples

			1.42981549990099451970390644376276...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, pp. 445-446.

Crossrefs

Cf. A006277, A243967 (xi).

Programs

  • Mathematica
    digits = 99; n0 = 5; dn = 5; Clear[q]; q[0] = q[1] = 1; q[n_] := q[n] = q[n - 2] (q[n - 1] + 1); eta[n_] := eta[n] = ((q[n] - 1)^(-1/2 - Sqrt[5]/2)*(q[n + 1] - 1))^(-(1/((1/2*(1 - Sqrt[5]))^n*Sqrt[5]))); eta[n0]; eta[n = n0 + dn]; While[RealDigits[eta[n], 10, digits + 10] != RealDigits[eta[n - 5], 10, digits + 10], Print["n = ", n]; n = n + dn]; RealDigits[eta[n], 10, digits] // First

Formula

q(n) = floor(xi^(phi^n)*eta^((1-phi)^n)) where phi is the golden ratio (1+sqrt(5))/2.

A007704 a(n+2) = (a(n) - 1)*a(n+1) + 1.

Original entry on oeis.org

2, 3, 4, 9, 28, 225, 6076, 1361025, 8268226876, 11253255215681025, 93044467205527772332546876, 1047053135870867396062743192203958743681025
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006277.

Programs

  • Maple
    A007704 := proc(n) options remember; if n <= 2 then RETURN(n+1) else (A007704(n-2)-1)*A007704(n-1)+1; fi; end;
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1] (a[n-2] - 1) + 1, a[1] == 2, a[2] == 3}, a, {n, 1, 12}] (* Jean-François Alcover, Apr 05 2020 *)

Formula

a(n) = A006277(n) + 1. - R. J. Mathar, Apr 27 2007
Product_{k=1..n} a(k) = A006277(k)*A006277(k+1). - Amiram Eldar, Mar 19 2024

A141609 a(n) = (a(n-1)*a(n-2) + a(n-1)^2)/a(n-3), with a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 2, 6, 48, 1296, 290304, 1763596800, 2400297571123200, 19846204885558066176000000, 223334408639880528216369404299444224000000, 20780031060559302184531906881808103844643569442380668928000000000000
Offset: 1

Views

Author

Roger L. Bagula, Aug 22 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (Self(n-1)*Self(n-2) +Self(n-1)^2)/Self(n-3): n in [1..15]]; // G. C. Greubel, Sep 21 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<4,1,(a[n-1]*a[n-2] +a[n-1]^2)/a[n-3]]; Table[a[n], {n,15}]
    RecurrenceTable[{a[1]==a[2]==a[3]==1,a[n]==(a[n-1]a[n-2]+a[n-1]^2)/a[n-3]}, a,{n,14}] (* Harvey P. Dale, Oct 01 2017 *)
  • SageMath
    def a(n): # a = A141609
        if n<3: return 1
        else: return (a(n-1)*a(n-2) +a(n-1)^2)/a(n-3)
    [a(n) for n in range(1,16)] # G. C. Greubel, Sep 21 2024

Formula

a(n+1) / a(n) = A006277(n-1). - Michael Somos, Dec 29 2012

Extensions

Edited by N. J. A. Sloane, Aug 24 2008

A292433 a(0) = 0, a(1) = 1; a(n) = prime(a(n-1))*a(n-1) + a(n-2).

Original entry on oeis.org

0, 1, 2, 7, 121, 79988, 81600798165, 182421074243967704954243
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2017

Keywords

Examples

			+---+-------------+--------------------+-------------------+
| n | a(n)/a(n+1) | Continued fraction |      Comment      |
+---+-------------+--------------------+-------------------+
| 1 |    1/2      | [0; 2]             |   2 = prime(a(1)) |
+---+-------------+--------------------+-------------------+
| 2 |    2/7      | [0; 3, 2]          |   3 = prime(a(2)) |
+---+-------------+--------------------+-------------------+
| 3 |    7/121    | [0; 17, 3, 2]      |  17 = prime(a(3)) |
+---+-------------+--------------------+-------------------+
| 4 |  121/79988  | [0; 661, 17, 3, 2] | 661 = prime(a(4)) |
+---+-------------+--------------------+-------------------+
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == Prime[a[n - 1]] a[n - 1] + a[n - 2]}, a[n], {n, 7}]
Showing 1-6 of 6 results.