cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118227 Decimal expansion of Cahen's constant.

Original entry on oeis.org

6, 4, 3, 4, 1, 0, 5, 4, 6, 2, 8, 8, 3, 3, 8, 0, 2, 6, 1, 8, 2, 2, 5, 4, 3, 0, 7, 7, 5, 7, 5, 6, 4, 7, 6, 3, 2, 8, 6, 5, 8, 7, 8, 6, 0, 2, 6, 8, 2, 3, 9, 5, 0, 5, 9, 8, 7, 0, 3, 0, 9, 2, 0, 3, 0, 7, 4, 9, 2, 7, 7, 6, 4, 6, 1, 8, 3, 2, 6, 1, 0, 8, 4, 8, 4, 4, 0, 8, 9, 5, 5, 5, 0, 4, 6, 3, 4, 3, 1, 9, 5, 4, 0, 5, 3
Offset: 0

Views

Author

Eric W. Weisstein, Apr 16 2006

Keywords

Comments

Cahen proved that his constant is irrational. Davison and Shallit proved that it is transcendental and computed its simple continued fraction expansion A006280. - Jonathan Sondow, Aug 17 2014
Named after the French mathematician Eugène Cahen (1865 - 1941). - Amiram Eldar, Oct 29 2020

Examples

			0.6434105462883380261...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.7, p. 436.

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := a[n] = a[n-1]^2 - a[n-1]+1; kmax = 1; FixedPoint[ RealDigits[ Sum[(-1)^k/(a[k]-1), {k, 0, kmax += 10}], 10, 105][[1]]&, kmax] (* Jean-François Alcover, Jul 28 2011, updated Jun 19 2014 *)
    Most@First@RealDigits@N[x=1; 1+Sum[x=x(1+x); (-1)^k/x, {k, 1, 9}], 106] (* Oliver Seipel, Aug 25 2024, after Charles R Greathouse IV *)
    Most@First@RealDigits@N[x=1; 1/2+Sum[x=x(1+x)(1+x+x^2); 1/(x+1), {k, 1, 4}], 106] (* Oliver Seipel, Aug 25 2024 *)
  • PARI
    C=1;1+suminf(k=1,C+=C^2; (-1)^k/C) \\ Charles R Greathouse IV, Jul 14 2020

Formula

Equals Sum_{k >= 0} (-1)^k/(A000058(k)-1).
Equals Sum_{n>=0} 1/A000058(2*n) = 1 - Sum_{n>=0} 1/A000058(2*n+1). - Amiram Eldar, Oct 29 2020
Equals 1 + (1/2) * Sum_{n>=0} (-1)^(n+1)/A129871(n). - Bernard Schott, Apr 06 2021

A006277 a(n) = (a(n-1) + 1)*a(n-2).

Original entry on oeis.org

1, 1, 2, 3, 8, 27, 224, 6075, 1361024, 8268226875, 11253255215681024, 93044467205527772332546875, 1047053135870867396062743192203958743681024, 97422501162981936223682742789520433197690551802305989766350860546875
Offset: 0

Views

Author

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.7 Cahen's Constant p. 435 and Section 6.10 Quadratic recurrence constants pp. 445-446.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006277_list = 1 : scanl ((*) . (+ 1)) 2 a006277_list -- Jack Willis, Dec 22 2013
    
  • Magma
    [n le 2 select 1 else (Self(n-1) + 1)*Self(n-2): n in [1..15]]; // Vincenzo Librandi, May 23 2019
  • Maple
    A006277 := proc(n) options remember; if n <= 1 then RETURN(1) else A006277(n-2)*(A006277(n-1)+1); fi; end;
  • Mathematica
    a=b=1;lst={a,b};Do[AppendTo[lst,c=a*b+a];a=b;b=c,{n,0,12}];lst (* Vladimir Joseph Stephan Orlovsky, May 06 2010 *)
    RecurrenceTable[{a[n]==a[n-2]*(1+a[n-1]),a[0]==1,a[1]==1},a,{n,0,15}] (* Vaclav Kotesovec, Jan 19 2015 *)
    nxt[{a_,b_}]:={b,a(b+1)}; NestList[nxt,{1,1},15][[All,1]] (* Harvey P. Dale, Jun 20 2021 *)
  • Maxima
    a(n) := if (n = 0 or n = 1) then 1 else a(n-2)*(a(n-1)+1) $
    makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 23 2017 */
    

Formula

Sum_{n>=0} 1/a(n) = 3. - Gerald McGarvey, Jul 20 2004
a(n) = floor(A243967^(phi^n) * A243968^((1-phi)^n)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Jan 19 2015
Sum_{k>=0} (-1)^k/(a(k)*a(k+1)) = A242724. - Amiram Eldar, May 15 2021

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, May 06 2010

A371321 Decimal expansion of Sum_{k>=0} 1/A007018(k).

Original entry on oeis.org

1, 6, 9, 1, 0, 3, 0, 2, 0, 6, 7, 5, 7, 2, 5, 3, 9, 7, 4, 4, 3, 5, 6, 6, 2, 8, 4, 3, 1, 4, 5, 7, 4, 1, 7, 9, 3, 8, 0, 8, 5, 7, 7, 2, 4, 2, 5, 7, 9, 5, 2, 4, 9, 4, 4, 9, 6, 0, 4, 6, 6, 0, 5, 4, 0, 0, 0, 0, 5, 4, 3, 3, 8, 2, 4, 7, 3, 9, 6, 7, 9, 5, 6, 5, 8, 5, 4, 5, 6, 7, 8, 3, 1, 9, 0, 2, 1, 0, 3, 6, 5, 7, 0, 0, 3
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2024

Keywords

Comments

The corresponding alternating sum, Sum_{k>=0} (-1)^k/A007018(k), equals Cahen's constant (A118227).
Duverney et al. (2018) proved that this constant is transcendental.
Called the "Kellogg-Curtiss constant" by Sondow (2021), after the American mathematicians Oliver Dimon Kellogg (1878-1932) and David Raymond Curtiss (1878-1953).
The Engel expansion of this constant is 1 followed by the Sylvester sequence (A000058, see the Formula section).

Examples

			1.69103020675725397443566284314574179380857724257952...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.7, p. 436.

Crossrefs

Programs

  • Mathematica
    s[0] = 2; s[n_] := s[n] = s[n - 1]^2 - s[n - 1] + 1; kmax = 1; FixedPoint[RealDigits[Sum[1/(s[k] - 1), {k, 0, kmax += 10}], 10, 120][[1]] &, kmax] (* after Jean-François Alcover at A118227 *)
  • PARI
    c = 1; 1 + suminf(k = 1, c += c^2; 1/c) \\ after Charles R Greathouse IV at A118227

Formula

Equals 1 + Sum_{k>=1} 1/(Product_{i=0..k-1} A000058(i)).
Showing 1-3 of 3 results.