cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000058 Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.

Original entry on oeis.org

2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Offset: 0

Views

Author

Keywords

Comments

Also called Euclid numbers, because a(n) = a(0)*a(1)*...*a(n-1) + 1 for n>0, with a(0)=2. - Jonathan Sondow, Jan 26 2014
Another version of this sequence is given by A129871, which starts with 1, 2, 3, 7, 43, 1807, ... .
The greedy Egyptian representation of 1 is 1 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1807 + ... .
Take a square. Divide it into 2 equal rectangles by drawing a horizontal line. Divide the upper rectangle into 2 squares. Now you can divide the lower one into another 2 squares, but instead of doing so draw a horizontal line below the first one so you obtain a (2+1 = 3) X 1 rectangle which can be divided in 3 squares. Now you have a 6 X 1 rectangle at the bottom. Instead of dividing it into 6 squares, draw another horizontal line so you obtain a (6+1 = 7) X 1 rectangle and a 42 X 1 rectangle left, etc. - Néstor Romeral Andrés, Oct 29 2001
More generally one may define f(1) = x_1, f(2) = x_2, ..., f(k) = x_k, f(n) = f(1)*...*f(n-1)+1 for n > k and natural numbers x_i (i = 1, ..., k) which satisfy gcd(x_i, x_j) = 1 for i <> j. By definition of the sequence we have that for each pair of numbers x, y from the sequence gcd(x, y) = 1. An interesting property of a(n) is that for n >= 2, 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) = (a(n)-2)/(a(n)-1). Thus we can also write a(n) = (1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 2 )/( 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 1). - Frederick Magata (frederick.magata(AT)uni-muenster.de), May 10 2001; [corrected by Michel Marcus, Mar 27 2019]
A greedy sequence: a(n+1) is the smallest integer > a(n) such that 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n+1) doesn't exceed 1. The sequence gives infinitely many ways of writing 1 as the sum of Egyptian fractions: Cut the sequence anywhere and decrement the last element. 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/3 + 1/7 + 1/42 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = ... . - Ulrich Schimke, Nov 17 2002; [corrected by Michel Marcus, Mar 27 2019]
Consider the mapping f(a/b) = (a^3 + b)/(a + b^3). Starting with a = 1, b = 2 and carrying out this mapping repeatedly on each new (reduced) rational number gives 1/2, 1/3, 4/28 = 1/7, 8/344 = 1/43, ..., i.e., 1/2, 1/3, 1/7, 1/43, 1/1807, ... . Sequence contains the denominators. Also the sum of the series converges to 1. - Amarnath Murthy, Mar 22 2003
a(1) = 2, then the smallest number == 1 (mod all previous terms). a(2n+6) == 443 (mod 1000) and a(2n+7) == 807 (mod 1000). - Amarnath Murthy, Sep 24 2003
An infinite coprime sequence defined by recursion.
Apart from the initial 2, a subsequence of A002061. It follows that no term is a square.
It appears that a(k)^2 + 1 divides a(k+1)^2 + 1. - David W. Wilson, May 30 2004. This is true since a(k+1)^2 + 1 = (a(k)^2 - a(k) + 1)^2 +1 = (a(k)^2-2*a(k)+2)*(a(k)^2 + 1) (a(k+1)=a(k)^2-a(k)+1 by definition). - Pab Ter (pabrlos(AT)yahoo.com), May 31 2004
In general, for any m > 0 coprime to a(0), the sequence a(n+1) = a(n)^2 - m*a(n) + m is infinite coprime (Mohanty). This sequence has (m,a(0))=(1,2); (2,3) is A000215; (1,4) is A082732; (3,4) is A000289; (4,5) is A000324.
Any prime factor of a(n) has -3 as its quadratic residue (Granville, exercise 1.2.3c in Pollack).
Note that values need not be prime, the first composites being 1807 = 13 * 139 and 10650056950807 = 547 * 19569939581. - Jonathan Vos Post, Aug 03 2008
If one takes any subset of the sequence comprising the reciprocals of the first n terms, with the condition that the first term is negated, then this subset has the property that the sum of its elements equals the product of its elements. Thus -1/2 = -1/2, -1/2 + 1/3 = -1/2 * 1/3, -1/2 + 1/3 + 1/7 = -1/2 * 1/3 * 1/7, -1/2 + 1/3 + 1/7 + 1/43 = -1/2 * 1/3 * 1/7 * 1/43, and so on. - Nick McClendon, May 14 2009
(a(n) + a(n+1)) divides a(n)*a(n+1)-1 because a(n)*a(n+1) - 1 = a(n)*(a(n)^2 - a(n) + 1) - 1 = a(n)^3 - a(n)^2 + a(n) - 1 = (a(n)^2 + 1)*(a(n) - 1) = (a(n) + a(n)^2 - a(n) + 1)*(a(n) - 1) = (a(n) + a(n+1))*(a(n) - 1). - Mohamed Bouhamida, Aug 29 2009
This sequence is also related to the short side (or hypotenuse) of adjacent right triangles, (3, 4, 5), (5, 12, 13), (13, 84, 85), ... by A053630(n) = 2*a(n) - 1. - Yuksel Yildirim, Jan 01 2013, edited by M. F. Hasler, May 19 2017
For n >= 4, a(n) mod 3000 alternates between 1807 and 2443. - Robert Israel, Jan 18 2015
The set of prime factors of a(n)'s is thin in the set of primes. Indeed, Odoni showed that the number of primes below x dividing some a(n) is O(x/(log x log log log x)). - Tomohiro Yamada, Jun 25 2018
Sylvester numbers when reduced modulo 864 form the 24-term arithmetic progression 7, 43, 79, 115, 151, 187, 223, 259, 295, 331, ..., 763, 799, 835 which repeats itself until infinity. This was first noticed in March 2018 and follows from the work of Sondow and MacMillan (2017) regarding primary pseudoperfect numbers which similarly form an arithmetic progression when reduced modulo 288. Giuga numbers also form a sequence resembling an arithmetic progression when reduced modulo 288. - Mehran Derakhshandeh, Apr 26 2019
Named after the English mathematician James Joseph Sylvester (1814-1897). - Amiram Eldar, Mar 09 2024
Guy askes if it is an irrationality sequence (see Guy, 1981). - Stefano Spezia, Oct 13 2024

Examples

			a(0)=2, a(1) = 2+1 = 3, a(2) = 2*3 + 1 = 7, a(3) = 2*3*7 + 1 = 43.
		

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
  • Richard K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
  • Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid. Delta, Vol. 5 (1975), pp. 49-63.
  • Amarnath Murthy, Smarandache Reciprocal partition of unity sets and sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005267, A000945, A000946, A005265, A005266, A075442, A007018, A014117, A054377, A002061, A118227, A126263, A007996 (primes dividing some term), A323605 (smallest prime divisors), A091335 (number of prime divisors), A129871 (a variant starting with 1).

Programs

  • Haskell
    a000058 0 = 2
    a000058 n = a000058 m ^ 2 - a000058 m + 1 where m = n - 1
    -- James Spahlinger, Oct 09 2012
    
  • Haskell
    a000058_list = iterate a002061 2  -- Reinhard Zumkeller, Dec 18 2013
    
  • Julia
    a(n) = n == 0 ? BigInt(2) : a(n - 1)*(a(n - 1) - 1) + 1
    [a(n) for n in 0:8] |> println # Peter Luschny, Dec 15 2020
  • Maple
    A[0]:= 2:
    for n from 1 to 12 do
    A[n]:= A[n-1]^2 - A[n-1]+1
    od:
    seq(A[i],i=0..12); # Robert Israel, Jan 18 2015
  • Mathematica
    a[0] = 2; a[n_] := a[n - 1]^2 - a[n - 1] + 1; Table[ a[ n ], {n, 0, 9} ]
    NestList[#^2-#+1&,2,10] (* Harvey P. Dale, May 05 2013 *)
    RecurrenceTable[{a[n + 1] == a[n]^2 - a[n] + 1, a[0] == 2}, a, {n, 0, 10}] (* Emanuele Munarini, Mar 30 2017 *)
  • Maxima
    a(n) := if n = 0 then 2 else a(n-1)^2-a(n-1)+1 $
    makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
    
  • PARI
    a(n)=if(n<1,2*(n>=0),1+a(n-1)*(a(n-1)-1))
    
  • PARI
    A000058(n,p=2)={for(k=1,n,p=(p-1)*p+1);p} \\ give Mod(2,m) as 2nd arg to calculate a(n) mod m. - M. F. Hasler, Apr 25 2014
    
  • PARI
    a=vector(20); a[1]=3; for(n=2, #a, a[n]=a[n-1]^2-a[n-1]+1); concat(2, a) \\ Altug Alkan, Apr 04 2018
    
  • Python
    A000058 = [2]
    for n in range(1, 10):
        A000058.append(A000058[n-1]*(A000058[n-1]-1)+1)
    # Chai Wah Wu, Aug 20 2014
    

Formula

a(n) = 1 + a(0)*a(1)*...*a(n-1).
a(n) = a(n-1)*(a(n-1)-1) + 1; Sum_{i>=0} 1/a(i) = 1. - Néstor Romeral Andrés, Oct 29 2001
Vardi showed that a(n) = floor(c^(2^(n+1)) + 1/2) where c = A076393 = 1.2640847353053011130795995... - Benoit Cloitre, Nov 06 2002 (But see the Aho-Sloane paper!)
a(n) = A007018(n+1)+1 = A007018(n+1)/A007018(n) [A007018 is a(n) = a(n-1)^2 + a(n-1), a(0)=1]. - Gerald McGarvey, Oct 11 2004
a(n) = sqrt(A174864(n+1)/A174864(n)). - Giovanni Teofilatto, Apr 02 2010
a(n) = A014117(n+1)+1 for n = 0,1,2,3,4; a(n) = A054377(n)+1 for n = 1,2,3,4. - Jonathan Sondow, Dec 07 2013
a(n) = f(1/(1-(1/a(0) + 1/a(1) + ... + 1/a(n-1)))) where f(x) is the smallest integer > x (see greedy algorithm above). - Robert FERREOL, Feb 22 2019
From Amiram Eldar, Oct 29 2020: (Start)
Sum_{n>=0} (-1)^n/(a(n)-1) = A118227.
Sum_{n>=0} (-1)^n/a(n) = 2 * A118227 - 1. (End)

A007018 a(n) = a(n-1)^2 + a(n-1), a(0)=1.

Original entry on oeis.org

1, 2, 6, 42, 1806, 3263442, 10650056950806, 113423713055421844361000442, 12864938683278671740537145998360961546653259485195806
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees having nodes of outdegree 0,1,2 and such that all leaves are at level n. Example: a(2)=6 because, denoting by I a path of length 2 and by Y a Y-shaped tree with 3 edges, we have I, Y, I*I, I*Y, Y*I, Y*Y, where * denotes identification of the roots. - Emeric Deutsch, Oct 31 2002
Equivalently, the number of acyclic digraphs (dags) that unravel to a perfect binary tree of height n. - Nachum Dershowitz, Jul 03 2022
a(n) has at least n different prime factors. [Saidak]
Subsequence of squarefree numbers (A005117). - Reinhard Zumkeller, Nov 15 2004 [This has been questioned, see MathOverflow link. - Charles R Greathouse IV, Mar 30 2015]
For prime factors see A007996.
Curtiss shows that if the reciprocal sum of the multiset S = {x_1, x_2, ..., x_n} is 1, then max(S) <= a(n). - Charles R Greathouse IV, Feb 28 2007
The number of reduced ZBDDs for Boolean functions of n variables in which there is no zero sink. (ZBDDs are "zero-suppressed binary decision diagrams.") For example, a(2)=6 because of the 2-variable functions whose truth tables are 1000, 1010, 1011, 1100, 1110, 1111. - Don Knuth, Jun 04 2007
Using the methods of Aho and Sloane, Fibonacci Quarterly 11 (1973), 429-437, it is easy to show that a(n) is the integer just a tiny bit below the real number theta^{2^n}-1/2, where theta =~ 1.597910218 is the exponential of the rapidly convergent series Sum_{n>=0} log(1+1/a_n)/2^{n+1}. For example, theta^32 - 1/2 =~ 3263442.0000000383. - Don Knuth, Jun 04 2007 [Corrected by Darryl K. Nester, Jun 19 2017]
The next term has 209 digits. - Harvey P. Dale, Sep 07 2011
Urquhart shows that a(n) is the minimum size of a tableau refutation of the clauses of the complete binary tree of depth n, see pp. 432-434. - Charles R Greathouse IV, Jan 04 2013
For any positive a(0), the sequence a(n) = a(n-1) * (a(n-1) + 1) gives a constructive proof that there exists integers with at least n distinct prime factors, e.g. a(n). As a corollary, this gives a constructive proof of Euclid's theorem stating that there are an infinity of primes. - Daniel Forgues, Mar 03 2017
Lower bound for A100016 (with equality for the first 5 terms), where a(n)+1 is replaced by nextprime(a(n)). - M. F. Hasler, May 20 2019

References

  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 94.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Lower bound for A100016.
Row sums of A122888.

Programs

  • Haskell
    a007018 n = a007018_list !! n
    a007018_list = iterate a002378 1  -- Reinhard Zumkeller, Dec 18 2013
    
  • Magma
    [n eq 1 select 1 else Self(n-1)^2 + Self(n-1): n in [1..10]]; // Vincenzo Librandi, May 19 2015
    
  • Maple
    A007018 := proc(n)
        option remember;
        local aprev;
        if n = 0 then
            1;
        else
            aprev := procname(n-1) ;
            aprev*(aprev+1) ;
        end if;
    end proc: # R. J. Mathar, May 06 2016
  • Mathematica
    FoldList[#^2 + #1 &, 1, Range@ 8] (* Robert G. Wilson v, Jun 16 2011 *)
    NestList[#^2 + #&, 1, 10] (* Harvey P. Dale, Sep 07 2011 *)
  • Maxima
    a[1]:1$
    a[n]:=(a[n-1] + (a[n-1]^2))$
    A007018(n):=a[n]$
    makelist(A007018(n),n,1,10); /* Martin Ettl, Nov 08 2012 */
    
  • PARI
    a(n)=if(n>0,my(x=a(n-1));x^2+x,1) \\ Edited by M. F. Hasler, May 20 2019 and Jason Yuen, Mar 01 2025
    
  • Python
    from itertools import islice
    def A007018_gen(): # generator of terms
        a = 1
        while True:
            yield a
            a *= a+1
    A007018_list = list(islice(A007018_gen(),9)) # Chai Wah Wu, Mar 19 2024

Formula

a(n) = A000058(n)-1 = A000058(n-1)^2 - A000058(n-1) = 1/(1-Sum_{jA000058(j)) where A000058 is Sylvester's sequence. - Henry Bottomley, Jul 23 2001
a(n) = floor(c^(2^n)) where c = A077125 = 1.597910218031873178338070118157... - Benoit Cloitre, Nov 06 2002
a(1)=1, a(n) = Product_{k=1..n-1} (a(k)+1). - Benoit Cloitre, Sep 13 2003
a(n) = A139145(2^(n+1) - 1). - Reinhard Zumkeller, Apr 10 2008
If an (additional) initial 1 is inserted, a(n) = Sum_{kFranklin T. Adams-Watters, Jun 11 2009
a(n+1) = a(n)-th oblong (or promic, pronic, or heteromecic) numbers (A002378). a(n+1) = A002378(a(n)) = A002378(a(n-1)) * (A002378(a(n-1)) + 1). - Jaroslav Krizek, Sep 13 2009
a(n) = A053631(n)/2. - Martin Ettl, Nov 08 2012
Sum_{n>=0} (-1)^n/a(n) = A118227. - Amiram Eldar, Oct 29 2020
Sum_{n>=0} 1/a(n) = A371321. - Amiram Eldar, Mar 19 2024

A006280 Partial quotients in continued fraction expansion of Cahen's constant.

Original entry on oeis.org

0, 1, 1, 1, 4, 9, 196, 16641, 639988804, 177227652025317609, 72589906463585427805281295977816196, 2280022876287160141646375873338796324543839666085098409289740769448641
Offset: 0

Views

Author

Keywords

Comments

Shifted squares of denominators of convergents to Cahen's constant: a(n) = A006279(n-2)^2 for n > 1. - Jonathan Sondow, Aug 20 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = If[n < 2, 1, b[n-2]^2*b[n-1] + b[n-2]];
    a[n_] := If[n == 0, 0, b[n-2]^2];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Sep 23 2022, after Jonathan Sondow *)

A006281 Partial quotients in continued fraction expansion of 2C-1, where C is Cahen's constant.

Original entry on oeis.org

0, 3, 2, 18, 98, 33282, 319994402, 354455304050635218, 36294953231792713902640647988908098
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    s[0] = 2; s[n_] := s[n] = s[n - 1]^2 - s[n-1] + 1; h[0] = 1; h[n_] := h[n] = (s[n] - 1)/(2*h[n-1]); a[0] = 0; a[1] = 3; a[n_] := 2*h[n-1]^2; Array[a, 9, 0] (* Amiram Eldar, Mar 19 2024 *)

A129871 A variant of Sylvester's sequence: a(0)=1 and for n>0, a(n) = (a(0)*a(1)*...*a(n-1)) + 1.

Original entry on oeis.org

1, 2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Offset: 0

Views

Author

Ben Branman, Sep 16 2011

Keywords

Comments

A variant of A000058, starting with an extra 1.

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, 1997, Exercice 3.3.4 page 284.

Crossrefs

Cf. A000058 which is the main entry for this sequence.
Cf. A118227.

Programs

  • Haskell
    a129871 n = a129871_list !! n
    a129871_list = 1 : a000058_list  -- Reinhard Zumkeller, Dec 18 2013
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Product[a[k], {k, 0, n - 1}] + 1

Formula

For n>0, a(n) = A000058(n-1).
a(1) = 2, a(n+1) = a(n)^2 - a(n) + 1. a(n) = round(c^(2^n)), where c = 1.264... is the Vardi constant, A076393. - Thomas Ordowski, Jun 11 2013
From Bernard Schott, Apr 06 2021: (Start)
Sum_{n>=0} 1/a(n) = 2.
Sum_{n>=0} (-1)^(n+1)/a(n) = 2 * (A118227 - 1). (End)

Extensions

Corrected and rewritten by Ben Branman, Sep 16 2011
Edited by Max Alekseyev, Oct 11 2012

A006279 Denominators of convergents to Cahen's constant: a(n+2) = a(n)^2*a(n+1) + a(n).

Original entry on oeis.org

1, 1, 2, 3, 14, 129, 25298, 420984147, 269425140741515486, 47749585090209528873482531562977121, 3466137915373323052799848584927709551269254572949111609037058632767202
Offset: 0

Views

Author

Keywords

Comments

Shifted square roots of partial quotients in continued fraction expansion of Cahen's constant: a(n) = sqrt(A006280(n+2)). - Jonathan Sondow, Aug 20 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006279 := proc(n) option remember; if n <= 1 then 1 else A006279(n-2)^2*A006279(n-1)+A006279(n-2) fi end:
    seq(A006279(n), n=0..10);
  • Mathematica
    a[n_] := a[n] = If[n < 2, 1, a[n-2]^2*a[n-1] + a[n-2]];
    Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Sep 23 2022 *)
  • Python
    from itertools import islice
    def A006279_gen(): # generator of terms
        a, b = 1, 1
        yield a
        while True:
            yield b
            a, b = b, a*(a*b+1)
    A006279_list = list(islice(A006279_gen(),10)) # Chai Wah Wu, Mar 19 2024

Extensions

Definition clarified by Jonathan Sondow, Aug 20 2014

A123180 Even positions of Sylvester's sequence A000058; the denominators of the (greedy) Egyptian fraction expansion of Cahen's constant.

Original entry on oeis.org

2, 7, 1807, 10650056950807, 12864938683278671740537145998360961546653259485195807
Offset: 0

Views

Author

David Eppstein, Oct 03 2006

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n*(n-1)*(n*(n-1)+1)+1; a[0] = 2; a[n_] := a[n] = f[a[n-1]]; Array[a, 5, 0] (* Amiram Eldar, Mar 19 2024 *)
    1+NestList[#(#+1)(#^2+#+1) &, 1, 4] (* Oliver Seipel, Aug 25 2024 *)
  • PARI
    a(n)=if(n, my(k=a(n-1));k*=k-1; k*(k+1)+1, 2) \\ Charles R Greathouse IV, Dec 12 2013

Formula

a(n) = a(n-1)*(a(n-1)-1)*(a(n-1)*(a(n-1)-1)+1)+1.
a(n) is approximately k^4^n with k = 1.5979102180318731783... (A077125). - Charles R Greathouse IV, Dec 12 2013
Sum_{n>=0} 1/a(n) = A118227. - Amiram Eldar, Mar 19 2024

Extensions

a(4) from Charles R Greathouse IV, Dec 12 2013

A242724 Decimal expansion of a constant associated with self-generating continued fractions and Cahen's constant.

Original entry on oeis.org

6, 2, 9, 4, 6, 5, 0, 2, 0, 4, 5, 5, 1, 8, 6, 7, 7, 1, 8, 3, 1, 2, 9, 4, 2, 2, 9, 1, 0, 7, 2, 3, 2, 1, 2, 2, 6, 9, 3, 5, 3, 0, 0, 6, 9, 2, 3, 9, 0, 8, 8, 0, 5, 6, 1, 7, 5, 7, 0, 4, 5, 6, 1, 3, 2, 9, 8, 3, 4, 7, 4, 4, 3, 6, 1, 7, 3, 6, 2, 4, 9, 1, 9, 5, 3, 9, 9, 8, 8, 7, 7, 9, 4, 0, 7, 3, 7, 3, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Comments

This constant is known to be transcendental.
Called the "Davison-Shallit constant" by Finch (2003) and Sondow (2021). - Amiram Eldar, Mar 19 2024

Examples

			0.62946502045518677183129422910723212269353...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.7, p. 435.

Crossrefs

Programs

  • Mathematica
    digits = 100; Clear[q, s]; q[n_] := q[n] = q[n - 2]*(q[n-1] + 1); q[0] = q[1] = 1; s[k_] := s[k] = Sum[(-1)^j/(q[j]*q[j+1]), {j, 0, k}] // N[#, digits+5]&; s[dk = 5]; s[k = 2*dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First

Formula

Equals Sum_{k>=0} (-1)^k/(A006277(k)*A006277(k+1)). - Amiram Eldar, Mar 19 2024

A371321 Decimal expansion of Sum_{k>=0} 1/A007018(k).

Original entry on oeis.org

1, 6, 9, 1, 0, 3, 0, 2, 0, 6, 7, 5, 7, 2, 5, 3, 9, 7, 4, 4, 3, 5, 6, 6, 2, 8, 4, 3, 1, 4, 5, 7, 4, 1, 7, 9, 3, 8, 0, 8, 5, 7, 7, 2, 4, 2, 5, 7, 9, 5, 2, 4, 9, 4, 4, 9, 6, 0, 4, 6, 6, 0, 5, 4, 0, 0, 0, 0, 5, 4, 3, 3, 8, 2, 4, 7, 3, 9, 6, 7, 9, 5, 6, 5, 8, 5, 4, 5, 6, 7, 8, 3, 1, 9, 0, 2, 1, 0, 3, 6, 5, 7, 0, 0, 3
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2024

Keywords

Comments

The corresponding alternating sum, Sum_{k>=0} (-1)^k/A007018(k), equals Cahen's constant (A118227).
Duverney et al. (2018) proved that this constant is transcendental.
Called the "Kellogg-Curtiss constant" by Sondow (2021), after the American mathematicians Oliver Dimon Kellogg (1878-1932) and David Raymond Curtiss (1878-1953).
The Engel expansion of this constant is 1 followed by the Sylvester sequence (A000058, see the Formula section).

Examples

			1.69103020675725397443566284314574179380857724257952...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.7, p. 436.

Crossrefs

Programs

  • Mathematica
    s[0] = 2; s[n_] := s[n] = s[n - 1]^2 - s[n - 1] + 1; kmax = 1; FixedPoint[RealDigits[Sum[1/(s[k] - 1), {k, 0, kmax += 10}], 10, 120][[1]] &, kmax] (* after Jean-François Alcover at A118227 *)
  • PARI
    c = 1; 1 + suminf(k = 1, c += c^2; 1/c) \\ after Charles R Greathouse IV at A118227

Formula

Equals 1 + Sum_{k>=1} 1/(Product_{i=0..k-1} A000058(i)).
Showing 1-9 of 9 results.