cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118227 Decimal expansion of Cahen's constant.

Original entry on oeis.org

6, 4, 3, 4, 1, 0, 5, 4, 6, 2, 8, 8, 3, 3, 8, 0, 2, 6, 1, 8, 2, 2, 5, 4, 3, 0, 7, 7, 5, 7, 5, 6, 4, 7, 6, 3, 2, 8, 6, 5, 8, 7, 8, 6, 0, 2, 6, 8, 2, 3, 9, 5, 0, 5, 9, 8, 7, 0, 3, 0, 9, 2, 0, 3, 0, 7, 4, 9, 2, 7, 7, 6, 4, 6, 1, 8, 3, 2, 6, 1, 0, 8, 4, 8, 4, 4, 0, 8, 9, 5, 5, 5, 0, 4, 6, 3, 4, 3, 1, 9, 5, 4, 0, 5, 3
Offset: 0

Views

Author

Eric W. Weisstein, Apr 16 2006

Keywords

Comments

Cahen proved that his constant is irrational. Davison and Shallit proved that it is transcendental and computed its simple continued fraction expansion A006280. - Jonathan Sondow, Aug 17 2014
Named after the French mathematician Eugène Cahen (1865 - 1941). - Amiram Eldar, Oct 29 2020

Examples

			0.6434105462883380261...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.7, p. 436.

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := a[n] = a[n-1]^2 - a[n-1]+1; kmax = 1; FixedPoint[ RealDigits[ Sum[(-1)^k/(a[k]-1), {k, 0, kmax += 10}], 10, 105][[1]]&, kmax] (* Jean-François Alcover, Jul 28 2011, updated Jun 19 2014 *)
    Most@First@RealDigits@N[x=1; 1+Sum[x=x(1+x); (-1)^k/x, {k, 1, 9}], 106] (* Oliver Seipel, Aug 25 2024, after Charles R Greathouse IV *)
    Most@First@RealDigits@N[x=1; 1/2+Sum[x=x(1+x)(1+x+x^2); 1/(x+1), {k, 1, 4}], 106] (* Oliver Seipel, Aug 25 2024 *)
  • PARI
    C=1;1+suminf(k=1,C+=C^2; (-1)^k/C) \\ Charles R Greathouse IV, Jul 14 2020

Formula

Equals Sum_{k >= 0} (-1)^k/(A000058(k)-1).
Equals Sum_{n>=0} 1/A000058(2*n) = 1 - Sum_{n>=0} 1/A000058(2*n+1). - Amiram Eldar, Oct 29 2020
Equals 1 + (1/2) * Sum_{n>=0} (-1)^(n+1)/A129871(n). - Bernard Schott, Apr 06 2021

A006281 Partial quotients in continued fraction expansion of 2C-1, where C is Cahen's constant.

Original entry on oeis.org

0, 3, 2, 18, 98, 33282, 319994402, 354455304050635218, 36294953231792713902640647988908098
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    s[0] = 2; s[n_] := s[n] = s[n - 1]^2 - s[n-1] + 1; h[0] = 1; h[n_] := h[n] = (s[n] - 1)/(2*h[n-1]); a[0] = 0; a[1] = 3; a[n_] := 2*h[n-1]^2; Array[a, 9, 0] (* Amiram Eldar, Mar 19 2024 *)

A006279 Denominators of convergents to Cahen's constant: a(n+2) = a(n)^2*a(n+1) + a(n).

Original entry on oeis.org

1, 1, 2, 3, 14, 129, 25298, 420984147, 269425140741515486, 47749585090209528873482531562977121, 3466137915373323052799848584927709551269254572949111609037058632767202
Offset: 0

Views

Author

Keywords

Comments

Shifted square roots of partial quotients in continued fraction expansion of Cahen's constant: a(n) = sqrt(A006280(n+2)). - Jonathan Sondow, Aug 20 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006279 := proc(n) option remember; if n <= 1 then 1 else A006279(n-2)^2*A006279(n-1)+A006279(n-2) fi end:
    seq(A006279(n), n=0..10);
  • Mathematica
    a[n_] := a[n] = If[n < 2, 1, a[n-2]^2*a[n-1] + a[n-2]];
    Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Sep 23 2022 *)
  • Python
    from itertools import islice
    def A006279_gen(): # generator of terms
        a, b = 1, 1
        yield a
        while True:
            yield b
            a, b = b, a*(a*b+1)
    A006279_list = list(islice(A006279_gen(),10)) # Chai Wah Wu, Mar 19 2024

Extensions

Definition clarified by Jonathan Sondow, Aug 20 2014

A123180 Even positions of Sylvester's sequence A000058; the denominators of the (greedy) Egyptian fraction expansion of Cahen's constant.

Original entry on oeis.org

2, 7, 1807, 10650056950807, 12864938683278671740537145998360961546653259485195807
Offset: 0

Views

Author

David Eppstein, Oct 03 2006

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n*(n-1)*(n*(n-1)+1)+1; a[0] = 2; a[n_] := a[n] = f[a[n-1]]; Array[a, 5, 0] (* Amiram Eldar, Mar 19 2024 *)
    1+NestList[#(#+1)(#^2+#+1) &, 1, 4] (* Oliver Seipel, Aug 25 2024 *)
  • PARI
    a(n)=if(n, my(k=a(n-1));k*=k-1; k*(k+1)+1, 2) \\ Charles R Greathouse IV, Dec 12 2013

Formula

a(n) = a(n-1)*(a(n-1)-1)*(a(n-1)*(a(n-1)-1)+1)+1.
a(n) is approximately k^4^n with k = 1.5979102180318731783... (A077125). - Charles R Greathouse IV, Dec 12 2013
Sum_{n>=0} 1/a(n) = A118227. - Amiram Eldar, Mar 19 2024

Extensions

a(4) from Charles R Greathouse IV, Dec 12 2013

A242724 Decimal expansion of a constant associated with self-generating continued fractions and Cahen's constant.

Original entry on oeis.org

6, 2, 9, 4, 6, 5, 0, 2, 0, 4, 5, 5, 1, 8, 6, 7, 7, 1, 8, 3, 1, 2, 9, 4, 2, 2, 9, 1, 0, 7, 2, 3, 2, 1, 2, 2, 6, 9, 3, 5, 3, 0, 0, 6, 9, 2, 3, 9, 0, 8, 8, 0, 5, 6, 1, 7, 5, 7, 0, 4, 5, 6, 1, 3, 2, 9, 8, 3, 4, 7, 4, 4, 3, 6, 1, 7, 3, 6, 2, 4, 9, 1, 9, 5, 3, 9, 9, 8, 8, 7, 7, 9, 4, 0, 7, 3, 7, 3, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Comments

This constant is known to be transcendental.
Called the "Davison-Shallit constant" by Finch (2003) and Sondow (2021). - Amiram Eldar, Mar 19 2024

Examples

			0.62946502045518677183129422910723212269353...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.7, p. 435.

Crossrefs

Programs

  • Mathematica
    digits = 100; Clear[q, s]; q[n_] := q[n] = q[n - 2]*(q[n-1] + 1); q[0] = q[1] = 1; s[k_] := s[k] = Sum[(-1)^j/(q[j]*q[j+1]), {j, 0, k}] // N[#, digits+5]&; s[dk = 5]; s[k = 2*dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First

Formula

Equals Sum_{k>=0} (-1)^k/(A006277(k)*A006277(k+1)). - Amiram Eldar, Mar 19 2024

A380013 Continued fraction expansion of Sum_{i>=0} (-1)^i/(q(i)*q(i+1)) where q(0)=q(1)=1, q(2n+2)=q(2n+1)+q(2n), and q(2n+3)=q(2n+1)*(q(2n+2)+1).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 18, 1, 432, 1, 196992, 1, 38895676416, 1, 1512881323731695591424, 1, 2288809899755012359448064967916189926490112, 1
Offset: 0

Views

Author

Khalil Ayadi, Jan 09 2025

Keywords

Comments

a(19) has 85 decimal digits and a(21) has 170 decimal digits.
This number is transcendental.
q(n) is the denominator of the convergent resulting from terms a(0..n).
The continued fraction is constructed by successively appending a pair of terms 1 and its own q(n) so far, so a(2*n) = 1 and a(2*n+1) = q(2*n-1) for n>=1
The series and the recurrence for q follows from that construction.
The series can also be written Sum_{i>=0} (-1)^i/x(i) where x(i) = q(i)*q(i+1) and in that case x(0)=1, x(2n+1) divides x(2n+2), and x(2n+3) = ((x(2n+2)/x(2n+1))*(x(2n)/x(2n-1))*...*(x(2)/x(1)))^2 + x(2n+2).

Examples

			0 + 1/(1 + 1/(1 + 1/(1 + ... ))) = 0.6087912199223083952132365...
		

Crossrefs

Programs

  • PARI
    Q(n) = {my(v=vector(n+1)); v[1]=v[2]=1; for(i=2, n, v[i+1] = if(i%2==0, v[i]+v[i-1], v[i-1]*(v[i]+1))); v}
    seq(n)=my(q=Q(max(2,n-2))); vector(n+1, n, if(n%2 || n<4, n>1, q[n-2])) \\ Andrew Howroyd, Jan 13 2025

A380194 Continued fraction expansion of Sum_{i>=0} (-1)^i/(q(i)*q(i+1)) where q(0)=q(1)=1, q(3n+2)=q(3n+1)+q(3n), q(3n+3)=q(3n+2)+q(3n+1), and q(3n+4)=q(3n+2)*(q(3n+2)*q(3n+3)+1).

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 1, 289, 1, 1, 81126049, 1, 1, 2128359349797626142548649, 1, 1, 38565134716822109850786884343127955049217538196275147632486387905655060249, 1, 1
Offset: 0

Views

Author

Khalil Ayadi, Jan 15 2025

Keywords

Comments

This is a transcendental number.
The n-th convergent of a(0..n) has q(n) as denominator.
Thus a(3*n+2) = a(3*n+3)=1 and a(3*n+4) = q(3*n+2)^2 for n>=1 are the results of repeatedly appending a triple of terms 1,1,Q^2 where Q is the convergent denominator after the first new 1.
The recurrence for q follows from this construction, and the alternating series is the continued fraction value for any sequence of convergent denominators.
This structure leads to the series and the recurrence for q.
Sum_{i>=0} (-1)^i/x(i) is another way to write the series, where x(i) = q(i)*q(i+1). When x(0)=1 , x(3n+2) divides x(3n+3), x(3n+2)-x(3n+1)=((x(3n+1))/x(3n))*(x(3n-1)/x(3n-2))*(x(3n-3)/x(3n-4))...(x(2)/x(1)))^2,x(3n+4)-x(3n+3)=(x(3n+3)/x(3n+2))^2*(x(3n+2)-x(3n+1)).

Examples

			0 + 1/(1 + 1/(1 + 1/(1 + ... ))) = 0.645164877940276...
		

Crossrefs

Programs

  • PARI
    q(n) = if (n<=1, 1, if (n%3==1, q(n-2)*(q(n-2)*q(n-1)+1), q(n-1)+q(n-2)));
    a(n) = if (n==0, 0, if ((n%3)==1, q(n-2)^2, 1)); \\ Michel Marcus, Jan 17 2025
Showing 1-7 of 7 results.