A243974
Integers n not of form 3m+1 such that for any integer k>0, n*10^k-1 has a divisor in the set { 7, 11, 13, 37 }.
Original entry on oeis.org
10176, 17601, 19361, 25827, 27147, 27686, 35916, 36048, 45462, 47213, 48036, 49248, 54638, 62864, 64184, 64899, 72953, 73085, 82499, 85073, 86285, 93435, 101760, 101936
Offset: 1
10176*10^k-1 is divisible by 11 for k of form 6m, 6m+2, 6m+4, by 7 for k of form 6m+1, by 37 for 6m+3 (and also 6m), and by 13 for 6m+5. This covers all k. {7, 11, 13, 37} is called a covering set. - _Jens Kruse Andersen_, Jul 09 2014
A244211
Integers n such that for every integer k>0, n*6^k-1 has a divisor in the set { 7, 13, 31, 37, 43 }.
Original entry on oeis.org
133946, 213410, 299144, 33845, 367256, 803676, 1214450, 1250446, 1280460, 1704478, 1780150, 1792762, 1794864, 2003070, 2004962, 2203536, 2798489, 3014465, 3027709, 3041998, 3053350, 3194549, 3326301, 4244794
Offset: 1
A244545
Integers n such that for every integer k>0, n*6^k+1 has a divisor in the set { 7, 13, 31, 37, 43 }.
Original entry on oeis.org
243417, 1161910, 1293662, 1434861, 1446213, 1460502, 1473746, 1689722, 2284675, 2483249, 2485141, 2693347, 2695449, 2708061, 2783733, 3207751, 3237765, 3273761, 3684535, 4120955, 4154366, 4189067, 4274801, 4354265
Offset: 1
A244351
Integers n such that for every integer k>0, n*6^k-1 has a divisor in the set { 7, 13, 31, 37, 97 }.
Original entry on oeis.org
84687, 429127, 508122, 1273238, 1570311, 1656045, 2574762, 2847748, 3048732, 3345805, 3849481, 5076399, 5324003, 5338292, 5908351, 6961919, 7639428, 8167823, 8508662, 8994775, 9078721, 9421866, 9936270, 9950261
Offset: 1
A244549
Integers m such that for every integer k>0, m*6^k+1 has a divisor in the set { 7, 13, 31, 37, 97 }.
Original entry on oeis.org
174308, 188299, 702703, 1045848, 1129794, 1615907, 1956746, 2485141, 3162650, 4216218, 4786277, 4800566, 5048170, 6275088, 6778764, 7075837, 7276821, 7549807, 8468524, 8554258, 8851331, 9616447, 9695442, 10039882
Offset: 1
A244598
Integers n such that for every k > 0, n*10^k-1 has a divisor in the set { 11, 73, 101, 137 }.
Original entry on oeis.org
152206, 1522060, 4109489, 4459665, 6001522, 7761557, 9489041, 10948904, 11263317, 12633171, 15220600, 15570776, 17112633, 18872668, 20600152, 22060015, 22374428, 23744282, 26331711, 26681887, 28223744, 29983779, 31711263, 33171126, 33485539, 34855393, 37442822
Offset: 1
Consider n = 152206.
If k is of the form 2*j+1, n*10^(2*j+1)-1 is divisible by 11.
If k is of the form 8*j, n*10^(8*j)-1 is divisible by 73.
If k is of the form 4*j+2, n*10^(4*j+2)-1 is divisible by 101.
If k is of the form 8*j+4, n*10^(8*j+4)-1 is divisible by 137.
This covers all k, so the covering set is { 11, 73, 101, 137 }.
Showing 1-6 of 6 results.
Comments