cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244019 Primes of the form 9x^2 + 6xy + 1849y^2.

Original entry on oeis.org

1873, 2017, 2137, 2377, 2473, 2689, 3217, 3529, 3697, 4057, 4657, 5569, 6073, 6337, 7177, 7393, 7417, 7561, 7681, 7753, 8017, 8089, 8233, 8353, 8737, 8761, 9241, 9601, 9769, 11113, 11257, 11617, 12049, 12433, 12457, 12721, 13297, 13633, 13729, 14281, 15073, 15313, 16417, 17977, 19009, 19273, 20161, 21169, 23017, 24049, 25873, 26161, 26497, 26713, 29569, 30097
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2014

Keywords

Comments

Discriminant=-66528.
More than the usual number of terms are shown in order to display the difference from A139668 (Primes of the form x^2+1848y^2). The two sequences agree for the first 43 primes but then disagree [Jagy and Kaplansky].
This is a proper subsequence of A139668, since the terms of A244019 have the form z^2 + 1848*y^2: in fact, 9*x^2 + 6*x*y + 1849*y^2 = (3*x+y)^2 + 1848*y^2. [Bruno Berselli, Jun 20 2014]

Crossrefs

Different from A139668 (Primes of the form x^2+1848y^2).

Programs

  • Maple
    fd:=proc(a,b,c,M) local dd,xlim,ylim,x,y,t1,t2,t3,t4,i;
    dd:=4*a*c-b^2;
    if dd<=0 then error "Form should be positive definite."; break; fi;
    t1:={};
    xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd)));
    ylim:=ceil( 2*sqrt(a*M/dd));
    for x from 0 to xlim do
    for y from -ylim to ylim do
    t2 := a*x^2+b*x*y+c*y^2;
    if t2 <= M then t1:={op(t1),t2}; fi; od: od:
    t3:=sort(convert(t1,list));
    t4:=[];
    for i from 1 to nops(t3) do
    if isprime(t3[i]) then t4:=[op(t4),t3[i]]; fi; od:
    [[seq(t3[i],i=1..nops(t3))], [seq(t4[i],i=1..nops(t4))]];
    end;
    fd(9,6,1849,50000);
  • Mathematica
    Reap[For[p = 2, p < 40000, p = NextPrime[p], s = Solve[x > 0 && 9 x^2 + 6 x y + 1849 y^2 == p, {x, y}, Integers]; If[s != {}, Print[p, " ", {x, y} /. s]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 29 2020 *)