A244019 Primes of the form 9x^2 + 6xy + 1849y^2.
1873, 2017, 2137, 2377, 2473, 2689, 3217, 3529, 3697, 4057, 4657, 5569, 6073, 6337, 7177, 7393, 7417, 7561, 7681, 7753, 8017, 8089, 8233, 8353, 8737, 8761, 9241, 9601, 9769, 11113, 11257, 11617, 12049, 12433, 12457, 12721, 13297, 13633, 13729, 14281, 15073, 15313, 16417, 17977, 19009, 19273, 20161, 21169, 23017, 24049, 25873, 26161, 26497, 26713, 29569, 30097
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Different from A139668 (Primes of the form x^2+1848y^2).
Programs
-
Maple
fd:=proc(a,b,c,M) local dd,xlim,ylim,x,y,t1,t2,t3,t4,i; dd:=4*a*c-b^2; if dd<=0 then error "Form should be positive definite."; break; fi; t1:={}; xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd))); ylim:=ceil( 2*sqrt(a*M/dd)); for x from 0 to xlim do for y from -ylim to ylim do t2 := a*x^2+b*x*y+c*y^2; if t2 <= M then t1:={op(t1),t2}; fi; od: od: t3:=sort(convert(t1,list)); t4:=[]; for i from 1 to nops(t3) do if isprime(t3[i]) then t4:=[op(t4),t3[i]]; fi; od: [[seq(t3[i],i=1..nops(t3))], [seq(t4[i],i=1..nops(t4))]]; end; fd(9,6,1849,50000);
-
Mathematica
Reap[For[p = 2, p < 40000, p = NextPrime[p], s = Solve[x > 0 && 9 x^2 + 6 x y + 1849 y^2 == p, {x, y}, Integers]; If[s != {}, Print[p, " ", {x, y} /. s]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 29 2020 *)
Comments