A244051 Triangle read by rows in which row n lists the parts of the partitions of n into equal parts, in nonincreasing order.
1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 6, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 9, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 5, 5, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: [1]; [2], [1,1]; [3], [1,1,1]; [4], [2,2], [1,1,1,1]; [5], [1,1,1,1,1]; [6], [3,3], [2,2,2], [1,1,1,1,1,1]; [7], [1,1,1,1,1,1,1]; [8], [4,4], [2,2,2,2], [1,1,1,1,1,1,1,1]; [9], [3,3,3], [1,1,1,1,1,1,1,1,1]; [10], [5,5], [2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1]; [11], [1,1,1,1,1,1,1,1,1,1,1]; [12], [6,6], [4,4,4], [3,3,3,3], [2,2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1,1,1]; [13], [1,1,1,1,1,1,1,1,1,1,1,1,1]; [14], [7,7], [2,2,2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1]; [15], [5,5,5], [3,3,3,3,3], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; [16], [8,8], [4,4,4,4], [2,2,2,2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; ... For n = 6 the 11 partitions of 6 are [6], [3, 3], [4, 2], [2, 2, 2], [5, 1], [3, 2], [4, 1, 1], [2, 2, 1, 1], [3, 1, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]. There are only four partitions of 6 that contain equal parts so the 6th row of triangle is [6], [3, 3], [2, 2, 2], [1, 1, 1, 1, 1, 1]. The number of parts equals sigma(6) = A000203(6) = 12. The row sum is A038040(6) = 6*A000005(6) = 6*4 = 24. From _Omar E. Pol_, Dec 04 2019: (Start) The structure of the above triangle is as follows: 1; 2 11; 3 111; 4 22 1111; 5 11111; 6 33 222 111111; 7 1111111; 8 44 2222 11111111; 9 333 111111111; ... (End)
Links
- Samuel Harkness, Table of n, a(n) for n = 1..10000
- Samuel Harkness, Log-log Scatterplot of the first 1000000 terms
Crossrefs
Programs
-
Mathematica
A244051row[n_]:=Flatten[Map[ConstantArray[#,n/#]&,Reverse[Divisors[n]]]]; Array[A244051row,10] (* Paolo Xausa, Oct 16 2023 *)
-
PARI
tabf(nn) = {for (n=1, nn, d = Vecrev(divisors(n)); for (i=1, #d, for (j=1, n/d[i], print1(d[i], ", "));); print(););} \\ Michel Marcus, Nov 08 2014
Comments