cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000722 Number of invertible Boolean functions of n variables: a(n) = (2^n)!.

Original entry on oeis.org

1, 2, 24, 40320, 20922789888000, 263130836933693530167218012160000000, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000
Offset: 0

Views

Author

Keywords

Comments

These are invertible maps from {0,1}^n to {0,1}^n, or in other words permutations of the 2^n binary vectors of length n.
2^n-th order derivative of n-th Mandelbrot iterate. Example: a(2) = 24, after one iterate in the Mandelbrot(z(n+1) = z(n)^2 + c) we have the function z(2) = z^4 + 2*c*z^2 + c^2 + c, for which the 4th-order derivative is 24. - Bert van den Bosch (zeusooooo(AT)hotmail.com), Sep 07 2003

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := Factorial[2^n]; Table[a[n],{n,0,6}] (* James C. McMahon, Dec 06 2023 *)
  • PARI
    atonfact(a,n) = {sr=0; for(x=1,n, y =(a^x)!; sr+=1.0/y; print1(y" "); ); print(); print(sr) }

Formula

a(n) = (2^n)!.
Sum of reciprocals = 0.54169146825401604874... - Cino Hilliard, Feb 08 2003

A244060 Sum of digits of (2^n)!.

Original entry on oeis.org

1, 2, 6, 9, 63, 108, 324, 828, 1989, 4635, 10845, 24363, 54279, 118827, 258705, 565389, 1216134, 2611359, 5584518, 11875977, 25184205, 53209728, 112069377, 235502361, 493827687, 1033041267, 2156974227, 4495662081, 9355185828, 19437382512, 40329016200
Offset: 0

Views

Author

Robert G. Wilson v, Jun 18 2014

Keywords

Examples

			If n=4, 2^4! = 16! = 20922789888000, with digit sum 63. - _N. J. A. Sloane_, Jun 18 2014
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Total[ IntegerDigits[ (2^n)!]]; Array[f, 20, 0]
  • PARI
    a(n) = sumdigits((2^n)!); \\ Michel Marcus, Oct 25 2021
    
  • Python
    from math import factorial
    def A244060(n): return sum(int(d) for d in str(factorial(2**n))) # Chai Wah Wu, Oct 26 2021

Formula

a(n) = A007953(A000722(n)). - Michel Marcus, Jun 19 2014

Extensions

a(26)-a(30) from Chai Wah Wu, Oct 25 2021
Showing 1-2 of 2 results.