A244090 Numbers n such that n is a factorion (A014080, equal to the sum of the factorials of its digits), in at least one base b.
1, 2, 7, 25, 26, 48, 49, 121, 122, 144, 145, 240, 721, 722, 726, 1440, 1441, 1442, 5041, 5042, 5162, 5760
Offset: 1
Examples
1 = 1! = 1 (base>=2). 2 = 1! + 0! = 1 + 1 = 10 (b=2). 7 = 1! + 3! = 1 + 6 = 13 (b=4). 25 = 4! + 1! = 24 + 1 = 41 (b=6). 26 = 4! + 2! = 24 + 2 = 42 (b=6). 48 = 4! + 4! = 24 + 24 = 44 (b=11). 49 = 1! + 4! + 4! = 1 + 24 + 24 = 144 (b=5). 121 = 5! + 1! = 120 + 1 = 51 (b=24). 122 = 5! + 2! = 120 + 2 = 52 (b=24). 144 = 5! + 4! = 120 + 24 = 54 (b=28). 145 = 1! + 4! + 5! = 1 + 24 + 120 (b=10). 240 = 5! + 5! = 120 + 120 = 55 (b=47).
Links
- Wikipedia, Factorion
Programs
-
PARI
isok(n) = {if (n==1, return (1)); for (b=2, n, d = digits(n, b); if (sum(i=1, #d, d[i]!) == n, return (1));); return (0);} \\ Michel Marcus, Jun 21 2014
Formula
s = 0; for digit(i=1..j) of n in base b, s = s + digit(i)!.
Comments