cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244116 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k).

Original entry on oeis.org

1, 0, 1, 0, 1, -1, 0, 1, -2, 4, 0, 1, -4, 12, -27, 0, 1, -8, 36, -108, 256, 0, 1, -16, 108, -432, 1280, -3125, 0, 1, -32, 324, -1728, 6400, -18750, 46656, 0, 1, -64, 972, -6912, 32000, -112500, 326592, -823543, 0, 1, -128, 2916, -27648, 160000, -675000, 2286144, -6588344, 16777216
Offset: 0

Views

Author

Stanislav Sykora, Jun 21 2014

Keywords

Comments

T(n,k) = (1-k)^(k-1) * k^(n-k) for k>0, and T(n,0) = 0^n by convention.

Examples

			The first few rows of the triangle are:
  1
  0 1
  0 1 -1
  0 1 -2 4
  0 1 -4 12  -27
  0 1 -8 36 -108 256
  ...
		

Crossrefs

Programs

  • Maple
    A244116 := (n, j) -> (-1)^(j + 1) * j^(n - j) * (j - 1)^(j - 1):
    for n from 0 to 9 do seq(A244116(n, k), k = 0..n) od; # Peter Luschny, Jan 28 2023
  • PARI
    seq(nmax,b)={my(v,n,k,irow);
      v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
      for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
        for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k););
      );return(v);}
      a=seq(100,1);