A244117 Triangle read by rows: terms of a binomial decomposition of 1 as Sum(k=0..n)T(n,k).
1, 0, 1, 0, 2, -1, 0, 3, -6, 4, 0, 4, -24, 48, -27, 0, 5, -80, 360, -540, 256, 0, 6, -240, 2160, -6480, 7680, -3125, 0, 7, -672, 11340, -60480, 134400, -131250, 46656, 0, 8, -1792, 54432, -483840, 1792000, -3150000, 2612736, -823543, 0, 9, -4608, 244944, -3483648, 20160000, -56700000, 82301184, -59295096, 16777216
Offset: 0
Examples
First rows of the triangle, all summing up to 1: 1 0 1 0 2 -1 0 3 -6 4 0 4 -24 48 -27 0 5 -80 360 -540 256
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4), with b=1.
Crossrefs
Programs
-
PARI
seq(nmax,b)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2);v[1]=1; for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k)*binomial(n,k);); );return(v);} a=seq(100,1);
Comments