cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244119 Triangle read by rows: terms of a binomial decomposition of 1 as Sum(k=0..n)T(n,k).

Original entry on oeis.org

1, 0, 1, 0, -2, 3, 0, 3, -18, 16, 0, -4, 72, -192, 125, 0, 5, -240, 1440, -2500, 1296, 0, -6, 720, -8640, 30000, -38880, 16807, 0, 7, -2016, 45360, -280000, 680400, -705894, 262144, 0, -8, 5376, -217728, 2240000, -9072000, 16941456, -14680064, 4782969
Offset: 0

Views

Author

Stanislav Sykora, Jun 21 2014

Keywords

Comments

T(n,k)=(1+k)^(k-1)*(-k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention.
Sequence A161628, arising from a different context, appears to be the same, but with opposite signs of odd rows.

Examples

			First rows of the triangle, all summing up to 1:
1
0  1
0 -2    3
0  3  -18   16
0 -4   72 -192   125
0  5 -240 1440 -2500 1296
		

Crossrefs

Programs

  • Maple
    A244119 := (n, k) -> (1+k)^(k-1)*(-k)^(n-k)*binomial(n,k):
    seq(seq(A244119(n, k), k = 0..n), n = 0..8); # Peter Luschny, Jan 29 2023
  • PARI
    seq(nmax,b)={my(v,n,k,irow);
      v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
      for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
        for(k=1,n,v[irow+k]=(1-k*b)^(k-1)*(k*b)^(n-k)*binomial(n,k););
      );return(v);}
      a=seq(100,-1);