cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244122 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

1, 0, 1, 0, -2, 8, 0, 3, -30, 108, 0, -4, 96, -588, 2048, 0, 5, -280, 2880, -14580, 50000, 0, -6, 768, -13122, 96000, -439230, 1492992, 0, 7, -2016, 56700, -596288, 3628800, -15594306, 52706752, 0, -8, 5120, -235224, 3538944, -28561000, 154893312, -637875000, 2147483648, 0
Offset: 0

Views

Author

Stanislav Sykora, Jun 21 2014

Keywords

Comments

T(n,k)=n*(n+k)^(k-1)*(-k)^(n-k) for k>0, while T(n,0)=0^n by convention.

Examples

			The first rows of the triangle are:
1
0  1
0 -2    8
0  3  -30  108
0 -4   96 -588   2048
0  5 -280 2880 -14580 50000
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
      v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
      for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
      for(k=1, n, v[irow+k] = n*(n-k*b)^(k-1)*(k*b)^(n-k); ); );
      return(v); }
      a=seq(100,-1);