cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244157 a(n) = difference between n and the n-th Catalan restricted growth string [b_k, b_{k-1}, ..., b_2, b_1] (see A239903) when it is viewed as a simple numeral in Catalan Base: b_k*C(k) + b_{k-1}*C(k-1) + ... + b_2*C(2) +b_1*C(1). Here C(m) = A000108(m).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 18
Offset: 0

Views

Author

Antti Karttunen, Jun 22 2014

Keywords

Crossrefs

A244155 gives the positions of zeros, A244156 the positions of nonzeros.

Programs

  • Scheme
    (define (A244157 n) (- n (CatBaseSum (A239903raw n)))) ;; A239903raw given in A239903.
    (define (CatBaseSum lista) (let loop ((digits (reverse lista)) (i 1) (s 0)) (if (null? digits) s (loop (cdr digits) (+ i 1) (+ s (* (car digits) (A000108 i)))))))

Formula

a(n) = n - A244158(A239903(n)) up to 58784, after which the "digits" in Catalan restricted growth strings grow larger than 9 and their decimal representation used in A239903 starts corrupting the results.
At n=58785 (= C(11)-1, where C(k) = the k-th Catalan number, A000108(k)), the correct value for this sequence is a(58785) = 58785 - ((1*C(10)) + (2*C(9)) + (3*C(8)) + (4*C(7)) + (5*C(6)) + (6*C(5)) + (7*C(4)) + (8*C(3)) + (9*C(2)) + (10*C(1))) = 25181.
Use the Scheme-program given in the Program sections of this entry and A239903 (the function A239903raw) to get correct results for all n.